1. (11 points)

4

2

The number of H1N1 viruses H (measured in trillions) that infect a college student is a function of the degree of immunosuppression I (the fraction of the immune system that is turned off by studying) according to $H(I) = 6I^2 + 2$. The fever F (measured in $^{\circ}$ C) associated with an infection is a function of the number of viruses according to F(H) = 37 + 0.5H. Find fever as a function of immunosuppression. What will the fever be if immunosuppression is complete (I = 1)?

$$H(I) = 6I^{2} + 2$$

$$F(H) = 37 + 0.5H$$

$$F(nd F(I) :$$

$$F(H(I)) = F(6I^{2} + 2) = 37 + 0.5(6I^{2} + 2) = 37 + 3I^{2} + 1$$

$$= 38 + 3I^{2};$$

$$If I = 1 F(1) = 39 + 3 = 41 F(I) = 38 + 3I^{2}$$

(b) Consider the data in the following table describing the number of students in Dorm Q that come down with the H1N1 flu as a function of the average number of hours that students in the dorm spend studying each day.

average number of hours	number of students
per day spent studying	sick with H1N1
1	34
4.5	13
5	10

i. These data lie on a line (to convince yourself of this, you may graph the data, but you do not need to show a graph here). Find the equation of the line connecting the first two points.

$$y-y_0 = m(x-x_0)$$
. $(x_0, y_0) = (1,34)$

$$m = \frac{13-34}{4.5-1} = \frac{-21}{3.5} = -6$$
equation: $y-34 = -6(x-1)$; $y = -6x + 40$

ii. How many students does your equation predict would get sick in in Dorm Q if the average numbers of hours that students in this dorm spend studying each day is 8? Does this make sense? Why or why not?

2. (12 points) Consider the discrete-time dynamical system with updating function

$$b_{t+1} = 0.4b_t$$

representing the population of bacteria.

(a) Find the solution of the discrete-time dynamical system if $b_0 = 1.0 \times 10^4$. 5

(b) Find the half-life of the population. 7

e half-life of the population.

$$\frac{1}{2} (1.0 \times 10^{4}) = 1.0 \times 10^{4} (0.4)^{\pm}$$

$$\frac{1}{2} = 0.4^{\pm}$$

$$\ln(\frac{1}{2}) = \ln(0.4^{\pm})$$

$$\ln(\frac{1}{2}) = \ln(0.4^{\pm})$$

$$\ln(\frac{1}{2}) = \ln(0.4^{\pm})$$

$$\ln(\frac{1}{2}) = \ln(0.4^{\pm})$$

$$\frac{1}{2} = e^{\ln(0.4) + \pm}$$

$$\ln(\frac{1}{2}) = \ln(0.4^{\pm})$$

$$\frac{1}{2} = e^{\ln(0.4) + \pm}$$

$$\frac{1}{$$

$$\frac{1}{2} = e^{\ln(0.4)t}$$

$$\frac{1}{2} = e^{\ln(0.4)t}$$

$$\ln(\frac{1}{2}) = \ln(0.4)t$$

$$t = \frac{\ln(\frac{1}{2})}{\ln(0.4)}$$

- 3. (14 points) Suppose that 40 percent of the medication in a patient's body is removed each day by the body but the patient takes an additional dose of 2 mg/L at the end of each day.
 - (a) Write the updating function $M_{t+1} = f(M_t)$ for the concentration of medicine on day t+1 as a function of the concentration on day t. Recall that

new concentration = old concentration - fraction used \times old concentration + supplement.

$$M_{\xi+1} = M_{\xi} - 0.4M_{\xi} + 2 = 0.6M_{\xi} + 2$$

$$M_{\xi+1} = 0.6M_{\xi} + 2$$
(b) Find the equilibrium point algebraically, if it exists.

4

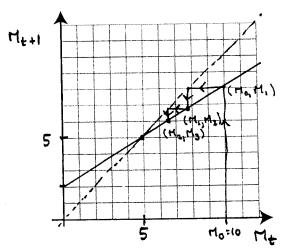
4

4

2

$$M^* = 0.6M^* + 2$$
 $0.4M^* = 2$
 $M^* = \frac{2}{0.4} = 5$

(c) Draw the graph of the updating function, identify the equilibrium if it exists, and cobweb the concentration for days 1,2, and 3 if the initial dose is $M_0 = 10$ mg/L. (Make sure to label clearly all points (M_t, M_{t+1}) on the updating function during cobwebbing.)



(d) If $M_0 = 10$, the solution to this discrete time dynamical system is $M_t = 5 \cdot (1 + (\frac{3}{5})^t)$ where t is time, measured in days. While the patient requires a high initial dose the patient will be at risk if the concentration remains above 6 mg/L for 3 days or more. Use the solution given to determine if this patient will be at risk. (Hint: What is M_3 ?)

$$M_3 = 5(1 + (3/5)^3) = 6.08 > 3$$
.
Uses, The patient is indeed at risk.

4. (12 points)

6

6

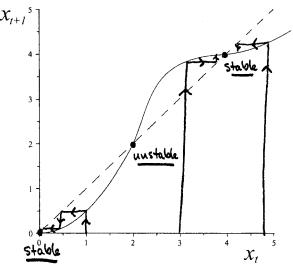
(a) Find all non-negative equilibria of the discrete-time dynamical system

$$m_{t+1} = \frac{2m_t}{1 + am_t},$$

where a is a positive parameter. How many equilibria are there if a = 0?

a 20:
$$M^{\pm} = \frac{2M^{\pm}}{1 + aM^{\pm}}$$
 $M^{\pm} (1 + aM^{\pm}) = 2M^{\pm}$
 $M^{\pm} = \frac{2M^{\pm}}{1 + aM^{\pm}}$
 $M^{\pm} = \frac{2M^{\pm}}{1 + aM^{\pm}}$
 $M^{\pm} = 0$
 $M^{\pm} = 0$

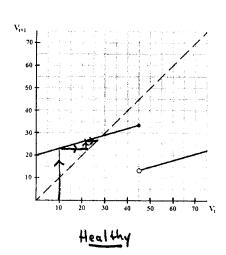
(b) The updating function for a discrete-time dynamical system $x_{t+1} = f(x_t)$ is graphed below. Use *cobwebbing* to help you label each of the three equilibria as stable or unstable.



5. (12 points) Let V_{t+1} represent the voltage of the AV node in the heart model.

$$V_{t+1} = \begin{cases} e^{-\alpha \tau} V_t + u, & \text{if } V_t \le e^{\alpha \tau} V_c \\ e^{-\alpha \tau} V_t, & \text{if } V_t > e^{\alpha \tau} V_c \end{cases}$$

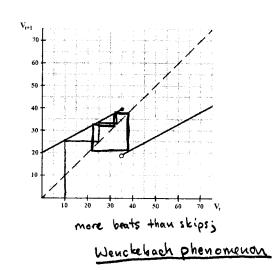
(a) For each of the following two graphs of the updating function, cobweb starting from an initial value of $V_0 = 10$ and determine if the heart is healthy, has 2:1 AV block, or the Wenckebach phenomenon.



4

4

4



(b) Let $e^{-\alpha \tau} = 0.6$, $V_c = 21$, and u = 8. If $V_0 = 26$ will the heart beat? Why or why not? Calculate V_1 .

$$e^{KE}V_c = \frac{21}{0.6} = 35$$
.
Since $V_0 = 26 (35)$, yes the heart will beat.
 $V_1 = 0.6(26) + 8 = 23.6 = V_1$

(c) Does the system described in part b have an equilibrium? Why or why not? If it has an equilibrium, find it algebraically.

There is an equilibrium then

$$V^* = e^{-\mu T}V^* + u = 0.6V^* + 8;$$

$$0.4V^* = 8;$$

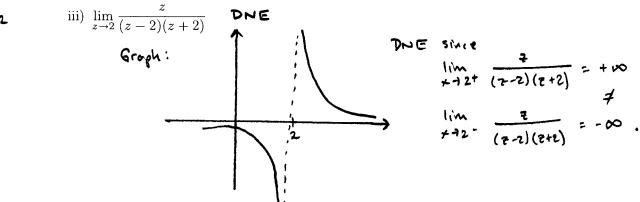
$$V^* = 20$$

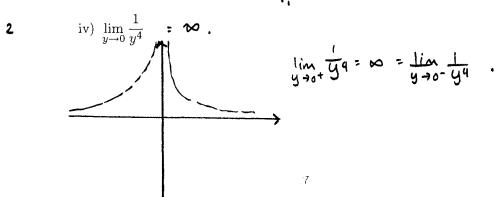
Since V*=20 < et V_c
=
$$\frac{21}{0.6}$$
, V+ is indeed an equilibrium; $\frac{4es}{0.6}$, the system equilibrium.

6. (13 points) (a) Find the following limits, if they exist. Show all of your work and justify your answers to receive full credit. If a limit does not exist, write "DNE," and explain why it does not exist.

2 i)
$$\lim_{x \to 1} \frac{7x^2 + 3x}{2x - 1} = \frac{7(1)^2 + 3(1)}{2(1) - 1} = 10$$

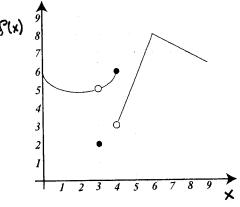
2 ii)
$$\lim_{t \to -2} \frac{t^2 + 9t + 14}{t + 2} = \lim_{t \to -2} \frac{(t+t)(t+7)}{t+2} = \lim_{t \to -2} (t+7) = 5$$
.





(continuation of problem 6)

(b) For the function f(x) graphed below, find the following limits or explain why the limit does not exist. (If a limit exists, you may just give a number without explanation.)



1 point apiece

a)
$$\lim_{x \to 3} f(x)$$
 = 5

b)
$$\lim_{x \to 4^-} f(x)$$
 = 6

c)
$$\lim_{x \to 4^+} f(x)$$
 : 3

d)
$$\lim_{x\to 4} f(x)$$
 DNE since $\lim_{x\to 4} f(x) = 3 \neq 6 = \lim_{x\to 4} f(x)$

e)
$$\lim_{x \to 6} f(x) :$$
%

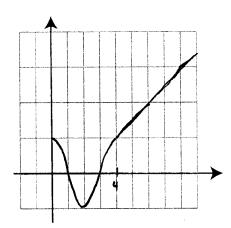
- 7. (12 points) If you use a calculator, please make sure that it is in radians.
 - (a) Accurately graph the function

4

4

4

$$M(t) = \begin{cases} \cos\left(\frac{\pi}{2}t\right), & t < 4\\ 0.5t - 1, & t \ge 4 \end{cases}$$



(b) Does $\lim_{t\to 4} M(t)$ exist? If so, find the value of the limit. If not, explain why not.

$$\lim_{t \to u^{-}} \Pi(t) = \lim_{t \to u^{-}} \cos(\frac{\pi}{2}t) = \cos(2\pi) = 1.$$

$$\lim_{t \to u^{+}} \Pi(t) = \lim_{t \to u^{+}} (0.5t - 1) = 0.5(u) - 1 = 1.$$

$$\lim_{t \to u^{+}} \Pi(t) = 1$$

(c) Is M(t) continuous at t=4? If so, use the definition of continuity to explain how you know this. If not, explain why it is not continuous there.

- 8. (14 points) Tom Brady forgot to shower after a football game, so foot fungus began to grow. Suppose that the fungus population f(t) on Tom's toes at time t is given by $f(t) = 4t^2 4t + 2$.
 - (a) Find a formula for the slope of the secant line that passes through (2, f(2)) and $(2 + \Delta t, f(2 + \Delta t))$.

slope =
$$\frac{f(z+\Delta t) - f(z)}{(z+\Delta t) - 2} = \frac{[4(z+\Delta t)^2 - 4(z+\Delta t) + 2] - [4(z)^2 - 4(z) + 2]}{\Delta t}$$
= ... =
$$\frac{|z \Delta t| + 4 \Delta t^2}{\Delta t} = 12 + 4 \Delta t.$$

(b) Find the average rate of change in the fungus population between times t=2 and t=2.1.

Average Rute of Change = Slope of Secont Line.

Using the result from port a, with
$$\Delta t = (2.1-2) = 0.1$$
,

average rate of change between $t=2$ and $t=2.1$

= $12+4(0.1) = 12.4$

(c) Use the definition of the derivative to find f'(2).

4

3

3

4

$$f'(z) = \lim_{\Delta t \to 0} \frac{f(z+\Delta t) - f(z)}{(z+\Delta t) - 2} = \lim_{\Delta t \to 0} (1z+4\Delta t) = 12.$$

(d) What is the equation of the tangent line to f(t) at time t = 2?

The taught line is given by
$$y - f(z) = f'(z)(x-2);$$

$$y - 10 = 12(x-2);$$

$$y = 12x - 24 + 10; \quad y = 12x - 14$$