CALCULUS AB
 SECTION II, Part B
 Time-60 minutes
 Number of problems-4

No calculator is allowed for these problems.

DO NOT BREAK THE SEALS UNTIL YOU ARE TOLD TO DO SO.

NO CALCULATOR ALLOWED

Graph of f
3. Let f be the continuous function defined on $[-4,3]$ whose graph, consisting of three line segments and a semicircle centered at the origin, is given above. Let g be the function given by $g(x)=\int_{1}^{x} f(t) d t$.
(a) Find the values of $g(2)$ and $g(-2)$.
(b) For each of $g^{\prime}(-3)$ and $g^{\prime \prime}(-3)$, find the value or state that it does not exist.

$\begin{array}{llllllllll}3 & 3 & 3 & 3 & \mathbf{3} & \mathbf{3} & \mathbf{3} & \mathbf{3} & \mathbf{3} & \mathbf{3}\end{array}$

(c) Find the x-coordinate of each point at which the graph of g has a horizontal tangent line. For each of these points, determine whether g has a relative minimum, relative maximum, or neither a minimum nor a maximum at the point. Justify your answers.
(d) For $-4<x<3$, find all values of x for which the graph of g has a point of inflection. Explain your reasoning.

$\begin{array}{llllll}\mathbf{4} & \mathbf{4} & \mathbf{4} & \mathbf{4} & \mathbf{4} \\ \text { no Calculator allowed }\end{array}$

4. The function f is defined by $f(x)=\sqrt{25-x^{2}}$ for $-5 \leq x \leq 5$.
(a) Find $f^{\prime}(x)$.
(b) Write an equation for the line tangent to the graph of f at $x=-3$.

$4 \quad 4 \quad 4$

(c) Let g be the function defined by $g(x)= \begin{cases}f(x) & \text { for }-5 \leq x \leq-3 \\ x+7 & \text { for }-3<x \leq 5 .\end{cases}$

Is g continuous at $x=-3$? Use the definition of continuity to explain your answer.
(d) Find the value of $\int_{0}^{5} x \sqrt{25-x^{2}} d x$.

NO CALCULATOR ALLOWED
5. The rate at which a baby bird gains weight is proportional to the difference between its adult weight and its current weight. At time $t=0$, when the bird is first weighed, its weight is 20 grams. If $B(t)$ is the weight of the bird, in grams, at time t days after it is first weighed, then

$$
\frac{d B}{d t}=\frac{1}{5}(100-B)
$$

Let $y=B(t)$ be the solution to the differential equation above with initial condition $B(0)=20$.
(a) Is the bird gaining weight faster when it weighs 40 grams or when it weighs 70 grams? Explain your reasoning.
(b) Find $\frac{d^{2} B}{d t^{2}}$ in terms of B. Use $\frac{d^{2} B}{d t^{2}}$ to explain why the graph of B cannot resemble the following graph.


```
55 5
(c) Use separation of variables to find \(y=B(t)\), the particular solution to the differential equation with initial condition \(B(0)=20\).
66
666
6
6
6
6
NO CALCULATOR ALLOWED
6. For \(0 \leq t \leq 12\), a particle moves along the \(x\)-axis. The velocity of the particle at time \(t\) is given by \(v(t)=\cos \left(\frac{\pi}{6} t\right)\). The particle is at position \(x=-2\) at time \(t=0\).
(a) For \(0 \leq t \leq 12\), when is the particle moving to the left?
(b) Write, but do not evaluate, an integral expression that gives the total distance traveled by the particle from time \(t=0\) to time \(t=6\).
66
6
6

6
6

6
6
NO CALCULATOR ALLOWED
(c) Find the acceleration of the particle at time \(t\). Is the speed of the particle increasing, decreasing, or neither at time \(t=4\) ? Explain your reasoning.
(d) Find the position of the particle at time \(t=4\).```

