AP ${ }^{\circledR}$ CALCULUS AB 2012 SCORING GUIDELINES

Question 3

Let f be the continuous function defined on $[-4,3]$ whose graph, consisting of three line segments and a semicircle centered at the origin, is given above. Let g be the function given by $g(x)=\int_{1}^{x} f(t) d t$.
(a) Find the values of $g(2)$ and $g(-2)$.
(b) For each of $g^{\prime}(-3)$ and $g^{\prime \prime}(-3)$, find the value or state that it does not exist.
(c) Find the x-coordinate of each point at which the graph of g has a horizontal tangent line. For each

Graph of f of these points, determine whether g has a relative minimum, relative maximum, or neither a minimum nor a maximum at the point. Justify your answers.
(d) For $-4<x<3$, find all values of x for which the graph of g has a point of inflection. Explain your reasoning.
(a) $g(2)=\int_{1}^{2} f(t) d t=-\frac{1}{2}(1)\left(\frac{1}{2}\right)=-\frac{1}{4}$

$$
\begin{aligned}
g(-2) & =\int_{1}^{-2} f(t) d t=-\int_{-2}^{1} f(t) d t \\
& =-\left(\frac{3}{2}-\frac{\pi}{2}\right)=\frac{\pi}{2}-\frac{3}{2}
\end{aligned}
$$

(b) $g^{\prime}(x)=f(x) \Rightarrow g^{\prime}(-3)=f(-3)=2$
$g^{\prime \prime}(x)=f^{\prime}(x) \Rightarrow g^{\prime \prime}(-3)=f^{\prime}(-3)=1$
(c) The graph of g has a horizontal tangent line where $g^{\prime}(x)=f(x)=0$. This occurs at $x=-1$ and $x=1$.
$g^{\prime}(x)$ changes sign from positive to negative at $x=-1$.
Therefore, g has a relative maximum at $x=-1$.
$g^{\prime}(x)$ does not change sign at $x=1$. Therefore, g has neither a relative maximum nor a relative minimum at $x=1$.
(d) The graph of g has a point of inflection at each of $x=-2, x=0$, and $x=1$ because $g^{\prime \prime}(x)=f^{\prime}(x)$ changes sign at each of these values.

Question 4

The function f is defined by $f(x)=\sqrt{25-x^{2}}$ for $-5 \leq x \leq 5$.
(a) Find $f^{\prime}(x)$.
(b) Write an equation for the line tangent to the graph of f at $x=-3$.
(c) Let g be the function defined by $g(x)= \begin{cases}f(x) & \text { for }-5 \leq x \leq-3 \\ x+7 & \text { for }-3<x \leq 5 .\end{cases}$

Is g continuous at $x=-3$? Use the definition of continuity to explain your answer.
(d) Find the value of $\int_{0}^{5} x \sqrt{25-x^{2}} d x$.
(a) $f^{\prime}(x)=\frac{1}{2}\left(25-x^{2}\right)^{-1 / 2}(-2 x)=\frac{-x}{\sqrt{25-x^{2}}}, \quad-5<x<5$
(b) $f^{\prime}(-3)=\frac{3}{\sqrt{25-9}}=\frac{3}{4}$
$f(-3)=\sqrt{25-9}=4$
An equation for the tangent line is $y=4+\frac{3}{4}(x+3)$.
(c) $\lim _{x \rightarrow-3^{-}} g(x)=\lim _{x \rightarrow-3^{-}} f(x)=\lim _{x \rightarrow-3^{-}} \sqrt{25-x^{2}}=4$
$\lim _{x \rightarrow-3^{+}} g(x)=\lim _{x \rightarrow-3^{+}}(x+7)=4$
Therefore, $\lim _{x \rightarrow-3} g(x)=4$.
$g(-3)=f(-3)=4$
So, $\lim _{x \rightarrow-3} g(x)=g(-3)$.
Therefore, g is continuous at $x=-3$.
(d) Let $u=25-x^{2} \Rightarrow d u=-2 x d x$

$$
\begin{aligned}
\int_{0}^{5} x \sqrt{25-x^{2}} d x & =-\frac{1}{2} \int_{25}^{0} \sqrt{u} d u \\
& =\left[-\frac{1}{2} \cdot \frac{2}{3} u^{3 / 2}\right]_{u=25}^{u=0} \\
& =-\frac{1}{3}(0-125)=\frac{125}{3}
\end{aligned}
$$

2: $f^{\prime}(x)$
$2:\left\{\begin{array}{l}1: f^{\prime}(-3) \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { considers one-sided limits } \\ 1: \text { answer with explanation }\end{array}\right.$
$3:\left\{\begin{array}{l}2: \text { antiderivative } \\ 1: \text { answer }\end{array}\right.$

AP ${ }^{\circledR}$ CALCULUS AB 2012 SCORING GUIDELINES

Question 5

The rate at which a baby bird gains weight is proportional to the difference between its adult weight and its current weight. At time $t=0$, when the bird is first weighed, its weight is 20 grams. If $B(t)$ is the weight of the bird, in grams, at time t days after it is first weighed, then

$$
\frac{d B}{d t}=\frac{1}{5}(100-B) .
$$

Let $y=B(t)$ be the solution to the differential equation above with initial condition $B(0)=20$.
(a) Is the bird gaining weight faster when it weighs 40 grams or when it weighs 70 grams? Explain your reasoning.
(b) Find $\frac{d^{2} B}{d t^{2}}$ in terms of B. Use $\frac{d^{2} B}{d t^{2}}$ to explain why the graph of B cannot resemble the following graph.
(c) Use separation of variables to find $y=B(t)$, the particular solution to the differential equation with initial condition $B(0)=20$.

(a) $\left.\frac{d B}{d t}\right|_{B=40}=\frac{1}{5}(60)=12$
$\left.\frac{d B}{d t}\right|_{B=70}=\frac{1}{5}(30)=6$
Because $\left.\frac{d B}{d t}\right|_{B=40}>\left.\frac{d B}{d t}\right|_{B=70}$, the bird is gaining
weight faster when it weighs 40 grams.
(b) $\frac{d^{2} B}{d t^{2}}=-\frac{1}{5} \frac{d B}{d t}=-\frac{1}{5} \cdot \frac{1}{5}(100-B)=-\frac{1}{25}(100-B)$

Therefore, the graph of B is concave down for
$2:\left\{\begin{array}{l}1: \text { uses } \frac{d B}{d t} \\ 1: \text { answer with reason }\end{array}\right.$ $20 \leq B<100$. A portion of the given graph is concave up.
(c) $\frac{d B}{d t}=\frac{1}{5}(100-B)$
$\int \frac{1}{100-B} d B=\int \frac{1}{5} d t$
$-\ln |100-B|=\frac{1}{5} t+C$
Because $20 \leq B<100,|100-B|=100-B$.
$-\ln (100-20)=\frac{1}{5}(0)+C \Rightarrow-\ln (80)=C$
$100-B=80 e^{-t / 5}$
$B(t)=100-80 e^{-t / 5}, \quad t \geq 0$
$2:\left\{\begin{array}{l}1: \frac{d^{2} B}{d t^{2}} \text { in terms of } B \\ 1: \text { explanation }\end{array}\right.$
$5:\left\{\begin{array}{l}1: \text { separation of variables } \\ 1: \text { antiderivatives } \\ 1: \text { constant of integration } \\ 1: \text { uses initial condition } \\ 1: \text { solves for } B\end{array}\right.$

Note: $\max 2 / 5$ [1-1-0-0-0] if no constant of integration

Note: $0 / 5$ if no separation of variables

AP ${ }^{\circledR}$ CALCULUS AB 2012 SCORING GUIDELINES

Question 6

For $0 \leq t \leq 12$, a particle moves along the x-axis. The velocity of the particle at time t is given by $v(t)=\cos \left(\frac{\pi}{6} t\right)$. The particle is at position $x=-2$ at time $t=0$.
(a) For $0 \leq t \leq 12$, when is the particle moving to the left?
(b) Write, but do not evaluate, an integral expression that gives the total distance traveled by the particle from time $t=0$ to time $t=6$.
(c) Find the acceleration of the particle at time t. Is the speed of the particle increasing, decreasing, or neither at time $t=4$? Explain your reasoning.
(d) Find the position of the particle at time $t=4$.
(a) $v(t)=\cos \left(\frac{\pi}{6} t\right)=0 \Rightarrow t=3,9$

The particle is moving to the left when $v(t)<0$.
This occurs when $3<t<9$.
(b) $\int_{0}^{6}|v(t)| d t$
(c) $a(t)=-\frac{\pi}{6} \sin \left(\frac{\pi}{6} t\right)$
$a(4)=-\frac{\pi}{6} \sin \left(\frac{2 \pi}{3}\right)=-\frac{\sqrt{3} \pi}{12}<0$
$v(4)=\cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2}<0$

The speed is increasing at time $t=4$, because velocity and acceleration have the same sign.
(d) $x(4)=-2+\int_{0}^{4} \cos \left(\frac{\pi}{6} t\right) d t$
$=-2+\left[\frac{6}{\pi} \sin \left(\frac{\pi}{6} t\right)\right]_{0}^{4}$
$=-2+\frac{6}{\pi}\left[\sin \left(\frac{2 \pi}{3}\right)-0\right]$
$=-2+\frac{6}{\pi} \cdot \frac{\sqrt{3}}{2}=-2+\frac{3 \sqrt{3}}{\pi}$

