2019 AP ${ }^{\circledR}$ CALCULUS AB FREE-RESPONSE QUESTIONS

CALCULUS AB

SECTION II, Part B
Time-1 hour
Number of questions-4

NO CALCULATOR IS ALLOWED FOR THESE QUESTIONS.

Graph of f
3. The continuous function f is defined on the closed interval $-6 \leq x \leq 5$. The figure above shows a portion of the graph of f, consisting of two line segments and a quarter of a circle centered at the point $(5,3)$. It is known that the point $(3,3-\sqrt{5})$ is on the graph of f.
(a) If $\int_{-6}^{5} f(x) d x=7$, find the value of $\int_{-6}^{-2} f(x) d x$. Show the work that leads to your answer.
(b) Evaluate $\int_{3}^{5}\left(2 f^{\prime}(x)+4\right) d x$.
(c) The function g is given by $g(x)=\int_{-2}^{x} f(t) d t$. Find the absolute maximum value of g on the interval $-2 \leq x \leq 5$. Justify your answer.
(d) Find $\lim _{x \rightarrow 1} \frac{10^{x}-3 f^{\prime}(x)}{f(x)-\arctan x}$.

2019 AP ${ }^{\circledR}$ CALCULUS AB FREE-RESPONSE QUESTIONS

4. A cylindrical barrel with a diameter of 2 feet contains collected rainwater, as shown in the figure above. The water drains out through a valve (not shown) at the bottom of the barrel. The rate of change of the height h of the water in the barrel with respect to time t is modeled by $\frac{d h}{d t}=-\frac{1}{10} \sqrt{h}$, where h is measured in feet and t is measured in seconds. (The volume V of a cylinder with radius r and height h is $V=\pi r^{2} h$.)
(a) Find the rate of change of the volume of water in the barrel with respect to time when the height of the water is 4 feet. Indicate units of measure.
(b) When the height of the water is 3 feet, is the rate of change of the height of the water with respect to time increasing or decreasing? Explain your reasoning.
(c) At time $t=0$ seconds, the height of the water is 5 feet. Use separation of variables to find an expression for h in terms of t.

2019 AP ${ }^{\circledR}$ CALCULUS AB FREE-RESPONSE QUESTIONS

5. Let R be the region enclosed by the graphs of $g(x)=-2+3 \cos \left(\frac{\pi}{2} x\right)$ and $h(x)=6-2(x-1)^{2}$, the y-axis, and the vertical line $x=2$, as shown in the figure above.
(a) Find the area of R.
(b) Region R is the base of a solid. For the solid, at each x the cross section perpendicular to the x-axis has area $A(x)=\frac{1}{x+3}$. Find the volume of the solid.
(c) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y=6$.

2019 AP ${ }^{\circledR}$ CALCULUS AB FREE-RESPONSE QUESTIONS

6. Functions f, g, and h are twice-differentiable functions with $g(2)=h(2)=4$. The line $y=4+\frac{2}{3}(x-2)$ is tangent to both the graph of g at $x=2$ and the graph of h at $x=2$.
(a) Find $h^{\prime}(2)$.
(b) Let a be the function given by $a(x)=3 x^{3} h(x)$. Write an expression for $a^{\prime}(x)$. Find $a^{\prime}(2)$.
(c) The function h satisfies $h(x)=\frac{x^{2}-4}{1-(f(x))^{3}}$ for $x \neq 2$. It is known that $\lim _{x \rightarrow 2} h(x)$ can be evaluated using

L'Hospital's Rule. Use $\lim _{x \rightarrow 2} h(x)$ to find $f(2)$ and $f^{\prime}(2)$. Show the work that leads to your answers.
(d) It is known that $g(x) \leq h(x)$ for $1<x<3$. Let k be a function satisfying $g(x) \leq k(x) \leq h(x)$ for $1<x<3$. Is k continuous at $x=2$? Justify your answer.

STOP
 END OF EXAM

