CALCULUS AB SECTION II, Part B

Time—1 hour

Number of questions—4

NO CALCULATOR IS ALLOWED FOR THESE QUESTIONS.

Graph of f

- 3. The continuous function f is defined on the closed interval $-6 \le x \le 5$. The figure above shows a portion of the graph of f, consisting of two line segments and a quarter of a circle centered at the point (5,3). It is known that the point $(3, 3 \sqrt{5})$ is on the graph of f.
 - (a) If $\int_{-6}^{5} f(x) dx = 7$, find the value of $\int_{-6}^{-2} f(x) dx$. Show the work that leads to your answer.
 - (b) Evaluate $\int_{3}^{5} (2f'(x) + 4) dx$.
 - (c) The function g is given by $g(x) = \int_{-2}^{x} f(t) dt$. Find the absolute maximum value of g on the interval $-2 \le x \le 5$. Justify your answer.
 - (d) Find $\lim_{x \to 1} \frac{10^x 3f'(x)}{f(x) \arctan x}$.

- 4. A cylindrical barrel with a diameter of 2 feet contains collected rainwater, as shown in the figure above. The water drains out through a valve (not shown) at the bottom of the barrel. The rate of change of the height h of the water in the barrel with respect to time t is modeled by $\frac{dh}{dt} = -\frac{1}{10}\sqrt{h}$, where h is measured in feet and t is measured in seconds. (The volume V of a cylinder with radius t and height t is t is t in the figure above. The
 - (a) Find the rate of change of the volume of water in the barrel with respect to time when the height of the water is 4 feet. Indicate units of measure.
 - (b) When the height of the water is 3 feet, is the rate of change of the height of the water with respect to time increasing or decreasing? Explain your reasoning.
 - (c) At time t = 0 seconds, the height of the water is 5 feet. Use separation of variables to find an expression for h in terms of t.

© 2019 The College Board. Visit the College Board on the web: collegeboard.org.

- 5. Let *R* be the region enclosed by the graphs of $g(x) = -2 + 3\cos\left(\frac{\pi}{2}x\right)$ and $h(x) = 6 2(x-1)^2$, the *y*-axis, and the vertical line x = 2, as shown in the figure above.
 - (a) Find the area of R.
 - (b) Region *R* is the base of a solid. For the solid, at each *x* the cross section perpendicular to the *x*-axis has area $A(x) = \frac{1}{x+3}$. Find the volume of the solid.
 - (c) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = 6.

- 6. Functions f, g, and h are twice-differentiable functions with g(2) = h(2) = 4. The line $y = 4 + \frac{2}{3}(x 2)$ is tangent to both the graph of g at x = 2 and the graph of h at x = 2.
 - (a) Find h'(2).
 - (b) Let a be the function given by $a(x) = 3x^3h(x)$. Write an expression for a'(x). Find a'(2).
 - (c) The function h satisfies $h(x) = \frac{x^2 4}{1 (f(x))^3}$ for $x \ne 2$. It is known that $\lim_{x \to 2} h(x)$ can be evaluated using L'Hospital's Rule. Use $\lim_{x \to 2} h(x)$ to find f(2) and f'(2). Show the work that leads to your answers.
 - (d) It is known that $g(x) \le h(x)$ for 1 < x < 3. Let k be a function satisfying $g(x) \le k(x) \le h(x)$ for 1 < x < 3. Is k continuous at x = 2? Justify your answer.

STOP END OF EXAM