AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2019 SCORING GUIDELINES

Question 1

(a) $\int_{0}^{5} E(t) d t=153.457690$

To the nearest whole number, 153 fish enter the lake from midnight to 5 A.M.
(b) $\frac{1}{5-0} \int_{0}^{5} L(t) d t=6.059038$

The average number of fish that leave the lake per hour from midnight to 5 A.M. is 6.059 fish per hour.
(c) The rate of change in the number of fish in the lake at time t is given by $E(t)-L(t)$.
$E(t)-L(t)=0 \Rightarrow t=6.20356$
$E(t)-L(t)>0$ for $0 \leq t<6.20356$, and $E(t)-L(t)<0$ for $6.20356<t \leq 8$. Therefore the greatest number of fish in the lake is at time $t=6.204$ (or 6.203).
—OR -
Let $A(t)$ be the change in the number of fish in the lake from midnight to t hours after midnight.
$A(t)=\int_{0}^{t}(E(s)-L(s)) d s$
$A^{\prime}(t)=E(t)-L(t)=0 \Rightarrow t=C=6.20356$

t	$A(t)$
0	0
C	135.01492
8	80.91998

Therefore the greatest number of fish in the lake is at time $t=6.204$ (or 6.203).
(d) $E^{\prime}(5)-L^{\prime}(5)=-10.7228<0$

Because $E^{\prime}(5)-L^{\prime}(5)<0$, the rate of change in the number of fish is decreasing at time $t=5$.
$2:\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { sets } E(t)-L(t)=0 \\ 1: \text { answer } \\ 1: \text { justification }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { considers } E^{\prime}(5) \text { and } L^{\prime}(5) \\ 1: \text { answer with explanation }\end{array}\right.$

AP ${ }^{\circledR}$ CALCULUS AB
 2019 SCORING GUIDELINES

Question 2

(a) v_{P} is differentiable $\Rightarrow v_{P}$ is continuous on $0.3 \leq t \leq 2.8$.
$\frac{v_{P}(2.8)-v_{P}(0.3)}{2.8-0.3}=\frac{55-55}{2.5}=0$
By the Mean Value Theorem, there is a value $c, 0.3<c<2.8$, such that $v_{P}^{\prime}(c)=0$.

- OR -
v_{P} is differentiable $\Rightarrow v_{P}$ is continuous on $0.3 \leq t \leq 2.8$.
By the Extreme Value Theorem, v_{p} has a minimum on $[0.3,2.8]$.
$v_{P}(0.3)=55>-29=v_{P}(1.7)$ and $v_{P}(1.7)=-29<55=v_{P}(2.8)$.
Thus v_{P} has a minimum on the interval $(0.3,2.8)$.
Because v_{P} is differentiable, $v_{P}{ }^{\prime}(t)$ must equal 0 at this minimum.
(b) $\int_{0}^{2.8} v_{P}(t) d t \approx 0.3\left(\frac{v_{P}(0)+v_{P}(0.3)}{2}\right)+1.4\left(\frac{v_{P}(0.3)+v_{P}(1.7)}{2}\right)$

$$
\begin{aligned}
& +1.1\left(\frac{v_{P}(1.7)+v_{P}(2.8)}{2}\right) \\
= & 0.3\left(\frac{0+55}{2}\right)+1.4\left(\frac{55+(-29)}{2}\right)+1.1\left(\frac{-29+55}{2}\right) \\
= & 40.75
\end{aligned}
$$

(c) $v_{Q}(t)=60 \Rightarrow t=A=1.866181$ or $t=B=3.519174$
$v_{Q}(t) \geq 60$ for $A \leq t \leq B$
$\int_{A}^{B}\left|v_{Q}(t)\right| d t=106.108754$
The distance traveled by particle Q during the interval $A \leq t \leq B$ is 106.109 (or 106.108) meters.
(d) From part (b), the position of particle P at time $t=2.8$ is
$x_{P}(2.8)=\int_{0}^{2.8} v_{P}(t) d t \approx 40.75$.
$x_{Q}(2.8)=x_{Q}(0)+\int_{0}^{2.8} v_{Q}(t) d t=-90+135.937653=45.937653$
Therefore at time $t=2.8$, particles P and Q are approximately $45.937653-40.75=5.188$ (or 5.187) meters apart.
$2:\left\{\begin{array}{c}1: v_{P}(2.8)-v_{P}(0.3)=0 \\ 1: \text { justification, using } \\ \text { Mean Value Theorem }\end{array}\right.$

- OR -
$2:\left\{\begin{array}{c}1: v_{P}(0.3)>v_{P}(1.7) \\ \text { and } v_{P}(1.7)<v_{P}(2.8) \\ 1: \text { justification, using } \\ \text { Extreme Value Theorem }\end{array}\right.$

1 : answer, using trapezoidal sum
$3:\left\{\begin{array}{l}1: \text { interval } \\ 1: \text { definite integral } \\ 1: \text { distance }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \int_{0}^{2.8} v_{Q}(t) d t \\ 1: \text { position of particle } Q\end{array}\right.$
1 : answer

