AP[®] CALCULUS AB/CALCULUS BC 2019 SCORING GUIDELINES

Question 1

(a)	$\int_0^5 E(t) dt = 153.457690$	2 : $\begin{cases} 1 : integral \\ 1 : answer \end{cases}$
	To the nearest whole number, 153 fish enter the lake from midnight to 5 A.M.	
(b)	$\frac{1}{5-0} \int_0^5 L(t) dt = 6.059038$	$2: \begin{cases} 1: integral \\ 1: answer \end{cases}$
	The average number of fish that leave the lake per hour from midnight to 5 A.M. is 6.059 fish per hour.	
(c)	The rate of change in the number of fish in the lake at time t is given by $E(t) - L(t)$.	3: $\begin{cases} 1 : \text{sets } E(t) - L(t) = 0 \\ 1 : \text{answer} \\ 1 : \text{instification} \end{cases}$
	$E(t) - L(t) = 0 \implies t = 6.20356$	
	$E(t) - L(t) > 0$ for $0 \le t < 6.20356$, and $E(t) - L(t) < 0$ for $6.20356 < t \le 8$. Therefore the greatest number of fish in the lake is at time $t = 6.204$ (or 6.203).	
	— OR —	
	Let $A(t)$ be the change in the number of fish in the lake from midnight to t hours after midnight.	
	$A(t) = \int_0^t (E(s) - L(s)) ds$	
	$A'(t) = E(t) - L(t) = 0 \implies t = C = 6.20356$	
	t $A(t)$	
	0 0	
	C 135.01492	
	8 80.91998	
	Therefore the greatest number of fish in the lake is at time $t = 6.204$ (or 6.203).	
(d)	E'(5) - L'(5) = -10.7228 < 0	2: $\begin{cases} 1 : \text{ considers } E'(5) \text{ and } L'(5) \\ 1 : \text{ answer with explanation} \end{cases}$
	Because $E'(5) - L'(5) < 0$, the rate of change in the number of fish is decreasing at time $t = 5$.	(1. answer with explanation

AP[®] CALCULUS AB 2019 SCORING GUIDELINES

Question 2

(a)
$$v_p$$
 is differentiable $\Rightarrow v_p$ is continuous on $0.3 \le t \le 2.8$.

$$\frac{v_p(2.8) - v_p(0.3)}{2.8 - 0.3} = \frac{55 - 55}{2.5} = 0$$
By the Mean Value Theorem, there is a value c , $0.3 < c < 2.8$, such that $v_p'(c) = 0$.
 $- OR -$
 v_p is differentiable $\Rightarrow v_p$ is continuous on $0.3 \le t \le 2.8$.
By the Extreme Value Theorem, v_p has a minimum on $[0.3, 2.8]$.
 $v_p(0.3) = 55 > -29 = v_p(1.7)$ and $v_p(1.7) = -29 < 55 = v_p(2.8)$.
Thus v_p has a minimum on the interval $(0.3, 2.8]$.
Because v_p is differentiable, $v_p'(t)$ must equal 0 at this minimum.
(b) $\int_0^{2.8} v_p(t) dt \approx 0.3 \left(\frac{v_p(0) + v_p(0.3)}{2}\right) + 1.4 \left(\frac{v_p(0.3) + v_p(1.7)}{2}\right)$
 $+ 1.1 \left(\frac{v_p(1.7) + v_p(2.8)}{2}\right)$
 $= 0.3 \left(\frac{0 + 55}{2}\right) + 1.4 \left(\frac{55 + (-29)}{2}\right) + 1.1 \left(\frac{-29 + 55}{2}\right)$
 $= 40.75$
(c) $v_0(t) = 60$ for $A \le t \le B$
 $\int_a^B |v_Q(t)| dt = 106.108754$
The distance traveled by particle Q during the interval $A \le t \le B$ is
 10.109 (or 106.108) meters.
(d) From part (b), the position of particle P at time $t = 2.8$ is
 $x_p(2.8) = x_Q(0) + \int_0^{2.8} v_Q(t) dt = -90 + 135.937653 = 45.937653$
Therefore at time $t = 2.8$, particles P and Q are approximately
 $45.937653 - 40.75 = 5.188$ (or 5.187) meters apart.
(1) $rootion of particle P and Q are approximately
 $45.937653 - 40.75 = 5.188$ (or 5.187) meters apart.$