Math 141, Exam 1 Spring 2025

Name:		
Student ID:		
Version: A		

Instructions:

- Do NOT open exam booklet until instructed.
- Write your Name and Student ID Number on the lines above.
- Write your Name and Student ID Number on the answer sheet.
- Fill in version (A or B) on your answer sheet.
- No calculators, personal devices (phones, computers, tablets, etc.), or reference materials may be used during the exam.
- Indicate your answer to each question on the answer sheet by fully filling in the appropriate bubble.
- You may use any blank space on this exam booklet for your scratch work.
- The exam booklet and answer sheet will be collected at the end of the exam. Only the answer sheet will be graded.

Answer #1-2 for the function $f(x) = \begin{cases} x - 3, & x < 4 \\ 2, & x = 4. \\ \frac{3}{4}x + \frac{1}{2}, & x > 4 \end{cases}$

- **1.** Find $\lim_{x\to 4^-} f(x)$.
 - (a) 1
 - (b) 2
 - (c) 3.5
 - (d) the limit does not exist
- **2.** Find $\lim_{x\to 4} f(x)$.
 - (a) 1
 - (b) 2
 - (c) 3.5
 - (d) the limit does not exist
- **3.** There are three conditions that must be met for a function g(x) to be continuous at a given x-value. If $\lim_{x\to 3} g(x) = 12$ and g(3) exists, what it the third condition that must be met for g(x) to be continuous at x = 3?
 - (a) g(3) cannot equal 0.
 - (b) $\lim_{x\to 3^+} g(x) = \lim_{x\to 3^-} g(x)$.
 - (c) $\lim_{x\to 3} g(x)$ cannot equal 0.
 - (d) g(3) = 12.
- **4.** Evaluate $\lim_{x\to -2} (x^3 + 3)$.
 - (a) -5
 - (b) 11
 - (c) 7
 - (d) the limit does not exist
- 5. Evaluate $\lim_{x\to 1} \frac{x^2-1}{x-1}$.
 - (a) 0
 - (b) ∞
 - (c) 2
 - (d) the limit does not exist

- **6.** A car's distance s in miles from its starting point after t hours is given by $s(t) = 3t^2$. Find the average rate of change of distance with respect to time (average velocity) as t changes from $t_1 = 2$ to $t_2 = 5$.
 - (a) 7 miles/hour
 - (b) 21 miles/hour
 - (c) 63 miles/hour
 - (d) 30 miles/hour
- 7. A car's distance s in miles from its starting point after t hours is given by $s(t) = 3t^2$. Find the instantaneous rate of change of distance with respect to time (instantaneous velocity) at t = 5.
 - (a) 75 miles/hour
 - (b) 30 miles/hour
 - (c) 12 miles/hour
 - (d) 63 miles/hour
- **8.** What is the difference quotient, and what does it represent?
 - (a) $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$; it is the average rate of change between two points.
 - (b) $\frac{f(x+h)-f(x)}{h}$; it is the derivative of the function.
 - (c) $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$; it is the instantaneous rate of change at a point.
 - (d) $\frac{f(x+h)-f(x)}{h}$; it is the average rate of change between two points.
 - (e) $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$; it is the derivative of the function.

Consider the function $f(x) = x^2 + 10x$ when answering # 9-12.

9. Find the simplified form of the difference quotient for the function $f(x) = x^2 + 10x$.

(a)
$$2xh + h + 10h$$

(b)
$$2x + h + 10$$

(c)
$$2x + h$$

(d)
$$2x + 10$$

Use your answer from question to help you complete the following table, then answer questions #10-12.

x	h	value of difference quotient
2	1	
2	.1	
2	.01	

10. Consider your answer in the table when x = 2 and h = 1. What does the value of the difference quotient represent?

- (a) The slope of the secant line between the points (2, f(2)) and (3, f(3)).
- (b) The slope of the tangent lie at x = 2.
- (c) The slope of the secant line between (2, f(2)) and (1, f(1)).
- (d) The slope of the tangent line at h = 1.

11. As h gets closer and closer to 0, the difference quotient gets closer and closer to $__$.

- (a) 10
- (b) 14
- (c) 4
- (d) 2

12. What does your answer to #11 represent?

- (a) The slope of the secant line at x = 2.
- (b) The slope of the tangent line at x = 2.
- (c) The slope of the secant line at h = 0.
- (d) The slope of the tangent line at h = 0.

Consider the function f(x), which is graphed below, when answering #13 - 16.

13. Which of the following statements is true?

- (a) f(5) is positive f'(5) is positive.
- (b) f(5) is positive f'(5) is negative.
- (c) f(5) is negative f'(5) is positive.
- (d) f(5) is negative f'(5) is negative.
- (e) None of the above statements are true.

14. Which of the following statements is true?

- (a) f(0) is positive f'(0) is positive.
- (b) f(0) is positive f'(0) is negative.
- (c) f(0) is negative f'(0) is positive.
- (d) f(0) is negative f'(0) is negative.
- (e) None of the above statements are true.

(Continued from previous page)

Consider the function f(x), which is graphed below, when answering #13 - 16.

15. For which x-value is f(x) not differentiable.

- (a) -2
- (b) 1
- (c) 4
- (d) f(x) is differentiable at all of the above x-values

16. Which of the following has the smallest value?

- (a) f'(-7)
- (b) f'(1)
- (c) f'(5)
- (d) f'(4.5)
- (e) f'(6)

17. Find the derivative of the function $h(x) = \sqrt{3x+4}$.

- (a) $\frac{3}{2}\sqrt{3x+4}$
- (b) $\frac{1}{2\sqrt{3x+4}}$
- (c) $\frac{1}{2}\sqrt{3x+4}$
- $(d) \ \frac{3}{2\sqrt{3x+4}}$

18. Compute the slope of the tangent line to $g(x) = x(x^3 + 2x)$ at x = 1.

- (a) 8
- (b) 11
- (c) 5
- (d) 3

19. Let $y = \frac{2x-1}{x+3}$. Find $\frac{dy}{dx}$.

- (a) $\frac{-7}{(x+3)^2}$
- (b) $\frac{7}{(x+3)^2}$
- $(c) \frac{4-x}{(x+3)^2}$
- $\left(\mathbf{d}\right) \ \frac{x-4}{(x+3)^2}$

20. Find the **second derivative** of $f(x) = x^3 - 2x^2 + 5x$.

- (a) $3x^2 4x + 5$
- (b) $3x^2 4x$
- (c) 12x 4
- (d) 6x 4