Final Exam Study Guide

Includes

1. Integrals \mathbb{E} Antiderivative Rules
2. Definite Integrals (Integrals with bounds)
3. Area Between Two Curves - Region Bounded by Two Curves
4. Consumer and Producer Surplus
5. U-Substitution
6. Integrals \& Antiderivatives
A. Rewrites

Remember to always stop and look for rewrites before you start trying to take the antiderivative. These are the three rewrites you need to look for.
a. Radicals

Example	$\operatorname{root} \sqrt{X^{p O W e r}}$	$\sqrt[r]{X^{p}}$	$\sqrt[3]{X^{5}}$
Rewrite	$X^{\frac{p o w e r}{r o o t}}$	$X^{\frac{p}{r}}$	$X^{\frac{5}{3}}$
		Square root	\sqrt{X}
			$X^{\frac{1}{2}}$

b. x on the bottom

Example	$\frac{a \text { number }}{x^{\text {power }}}$	$\frac{a}{x^{p}}$	$\frac{5}{x^{8}}$
Rewrite	a number $\cdot x^{- \text {power }}$	$a \cdot x^{-p}$	$5 \cdot x^{-8}$

c. Both

Example	$\frac{a \text { number }}{\text { root }} \sqrt{x^{\text {power }}}$	$\frac{a}{\sqrt[r]{x^{p}}}$	$\frac{5}{\sqrt[3]{x^{5}}}$
1st Radical Rewrite	$\frac{a \text { number }}{x^{\frac{p o w e r}{\text { root }}}}$	$\frac{a}{\frac{p}{p}}$	$\frac{5}{\frac{5}{5}}$
2nd x on the bottom	a number $\cdot x^{-\frac{p o w e r}{\text { root }}}$	$a \cdot x^{-\frac{p}{r}}$	$5 \cdot x^{-\frac{5}{3}}$

B. Power Rule

This is the main rule that you will use when finding an antiderivative. Rule:

Step 1: Add 1 to the power.
 Step 2: Divide by the new power.

Example 1		$\int x^{5} d x$	
Step I	Add 1 to the power.	x^{5+1}	X^{6}
Step 2	Divide by the new power.	$\frac{x^{5+1}}{5+1}$	$\frac{x^{6}}{6}$
Final Result			$\frac{x^{6}}{6}+C$
Example 2	First apply Rewrites Second apply Power Rule	$\int \frac{5}{\sqrt[3]{x^{5}}} d x$	
Step 1: Radical Rewrite		$\int \frac{5}{x^{\frac{5}{3}}} d x$	
Step 2: x on bottom Rewrite		$\int 5 \cdot x^{-\frac{5}{3}} d x$	
Step 3: Power Rule	Add 1 to the power.	$5 \cdot x^{-\frac{5}{3}+1}$	$5 \cdot x^{-\frac{2}{3}}$
Step 4: Divide by the new power.	Divide by the new power.	$\frac{5 \cdot x^{-\frac{5}{3}+1}}{-\frac{5}{3}+1}$	$\frac{5 \cdot x^{-\frac{2}{3}}}{-\frac{2}{3}}$
Final Result			$\frac{5 \cdot x^{-\frac{2}{3}}}{-\frac{2}{3}}+C$

C. Special Cases

a. Natural Log $=\ln (x)$

Example	$\int \frac{a \text { number }}{x} d x$	$\int \frac{a}{x} d x$	$\int \frac{5}{x} d x$
Result	a number $\cdot \ln (x)+C$	$a \cdot \ln (x)+C$	$5 \cdot \ln (x)+C$

b. e to a power

Example	$\int e^{(a \text { number } \cdot x)} d x$	$\int e^{(a \cdot x)} d x$	$\int e^{(5 \cdot x)} d x$
Result	$\frac{1}{a \text { number }} \cdot e^{(a \text { number } \cdot x)}+C$	$\frac{1}{a} \cdot e^{(a \cdot x)}+C$	$\frac{1}{5} \cdot e^{(5 \cdot x)}+C$

2. Definite Integrals (Integrals with bounds)

Example

Step I

Step 2

Step 3

Result

Hit $Y=$ on your calculator and input the equation into Y 1

Hit GRAPH Button

Hit: 2nd->CALC
->\#7 $\int f(x) d x$

The cube root button is under the Math button.

$$
\int_{3}^{5} \sqrt[3]{x}+5 x^{3}+7 x+5 d x
$$

$$
Y 1=\sqrt[3]{x}+5 x^{3}+7 x+5
$$

Make sure your x -window is large enough to take in your bounds. 3 \& 5 in this case.
-It will then ask you to enter a lower bound. Type 3 and hit Enter.
-It will then ask you to enter an upper bound. Type 5 and hit Enter.

Calculator will output your answer at the bottom of the screen.
$\int f(x) d x=749.16735$

3. Area Between Two Curves - Region Bounded by Two Curves

Equation	You will need to setup this equation to find the answer.	$\text { Area }=\int_{a}^{b} T o p-(\text { Bottom }) d x$	
Example		Find the area of the region bounded by the graphs of the functions $y=x$ and $y=x^{4}$ in the first quadrant (where $\mathrm{x} \geq 0$ and $\mathrm{y} \geq 0$).	
Step 1	Hit $Y=$ on your calculator and input the equations into Y1 \& Y2		$\begin{aligned} & Y 1=x \\ & Y 2=x^{4} \end{aligned}$
Step 2	Hit GRAPH Button	Adjust your window to be able to see the region bounded by the two curves.	Identify which graph is your Top equation (above), and which one is your Bottom equation (below).
Step 3	Find the upper and lower bounds for your situation.	Hit: 2nd—>CALC—>\#5 Intersect You will need to do this process twice to find the two intersects.	-It will ask you to select the First Curve. Just hit Enter. -lt will ask you to select the Second Curve. Just hit Enter. -lt will ask you for a guess. Scroll closer to one of the interests and hit Enter
Step 4	Bring together your results from Step 2 and Step 3 to create your equation.		$\int_{0}^{1} x-\left(x^{4}\right) d x$
Step 5	Enter your new equation into Y 1		$Y 1=x-x$
Step 6	Hit GRAPH Button	Hit: 2nd—>CALC—>\#7 $\int f(x) d x$	-It will ask you for a Lower Bound, enter 0. -lt will ask you for an Upper Bound, enter 1.
Result	The answer will be at the bottom of the screen.		$\int f(x) d x=.3$

4. Consumer and Producer Surplus

Equations	You will need to setup these equations to find the answers.	Consumer Surplus	$\int_{0}^{Q} D(x) d x-(Q \cdot P)$
		Producer Surplus	$(Q \cdot P)-\int_{0}^{Q} S(x) d x$
		Equilibrium Point (Q,P)	$S(x)=D(x)$
Example		Find the Consumer and Producer Surplus given$\begin{aligned} & D(x)=81-x^{2} \\ & S(x)=x^{2}+4 x+11 \end{aligned}$	
Step I	Hit $Y=$ on your calculator and input the supply and demand equations into $\mathrm{Y} 1 \& \mathrm{Y} 2$		$\begin{aligned} & Y 1=81-x^{2} \\ & Y 2=x^{2}+4 x+11 \end{aligned}$
Step 2	Hit GRAPH Button	Adjust your window to be able to see the intersections of the two graphs.	Note: You will see two intersections one in the positive x and one in the negative x. Always choose the positive.
Step 3	Find the intersection of the two graphs.	Hit: 2nd—>CALC->\#5 Intersect -It will ask you to select the First Curve. Just hit Enter. -It will ask you to select the Second Curve. Just hit Enter. -It will ask you for a guess. Scroll closer to one of the interests and hit Enter	You should find the intersect $(5,56)=(Q, P)$ this is your equilibrium point.
Step 4	Setup your Consumer Surplus Equation	$\int_{0}^{Q} D(x) d x-(Q \cdot P)$	$\int_{0}^{5} 81-x^{2} d x-(5 \cdot 56)$
Step 5	Plug the Demand Equation into Y 1 .	$\begin{aligned} & Y 1=81-x^{2} \\ & \text { Hit: } 2 \text { nd->CALC->\#7 } \\ & \int f(x) d x \end{aligned}$ Lower bound enter: 0 Upper bound enter: 5	Result $=363.33$
Step 6	Take Result from Step 5 and subtract off $(5 \cdot 56)=(280)$	$363.33-280=83.33$	Consumer Surplus = 83.33

Step 7	Setup your Producer Surplus Equation	$(Q \cdot P)-\int_{0} S(x) d x$	$(5 \cdot 56)-\int_{0}^{2} x^{2}+4 x+11 d x$
Step 8	Plug the Supply Equation into Y1.	$Y 1=x^{2}+4 x+11$ Hit: 2nd->CALC->\#7 $\int_{\text {Lower bound enter: } 0} f(x) d x$	Result =146.67
Step 9	Upper bound enter: 5	Take Result from Step 8 and subtract it from $(5 \cdot 56)=(280)$	$\mathbf{2 8 0 - 1 4 6 . 6 7 = 1 3 3 . 3 3}$

5. U-Substitution

Example	$\int\left(2 x^{2}-3 x+7\right)^{3}(4 x-3) d x$		
Step 1	Select your u. Priority List for selecting u 1) Inside Piece (like in a chain rule problem) 2) $\ln (x)$ 3) Bottom of a Fraction 4) Highest Power of x		$u=2 x^{2}-3 x+7$
Step 2	Take the derivative of your \mathbf{u}. Make sure to use this specific derivative notation.		$\frac{d u}{d x}=4 x-3$
Step 3	Solve for $\mathbf{d x}$. (i.e. get dx by itself)	Multiply both sides by dx	$d x \cdot \frac{d u}{d x}=(4 x-3) \cdot d x$
		Result	$d u=(4 x-3) \cdot d x$
		Divide both sides by $(4 x-3)$	$\frac{d u}{(4 x-3)}=\frac{(4 x-3) \cdot d x}{(4 x-3)}$
		Result	$\frac{d u}{(4 x-3)}=d x$
Step 4	Plug the u from Step 1 \& the dx from Step 3 back into original equation.		$\int(u)^{3}(4 x-3) \frac{d u}{(4 x-3)}$
Step 5	Simplify the Equation Cancel out the $(4 x-3)$. All your \mathbf{x} 's should cancel out every time so that all you are left with is an equation with u's.		$\int(u)^{3} d u$
Step 6	Apply the Power Rule		$\frac{(u)^{4}}{4}+C$
Step 7	Plug the u from Step 1 back in.		$\frac{\left(2 x^{2}-3 x+7\right)^{4}}{4}+C$

