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1. (15 points) The following table gives data for the number ¢;+1 of chocolates in a desk at the
end of week ¢4 1 as a function of the number ¢; of chocolates in the desk at the end of week

t.

Number of chocolates at end of week ¢ | Number of chocolates at end of week £+ 1
Ct : Ct+1
100 30
120 40
200 80
250 105

(a) These data lie on a line-that is, ¢;41 is a linear function of ¢;. Find the formula for ;41
as a function of ¢;.
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(b) Suppose that the number C(t) of candies in the desk at time ¢ obeys the equation
C(t) = C(0)e™ 0%,
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(¢) If the number of candies obeys the function C(¢) given in part (b), how long does it take
for the number of candies to reduce to 20% of the number C(0) of candies at time 07
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2. (15 points) Two otters splash into their salt-water pool at the Zoo, spilling 67 L of water
each time they splash. Their pool usually holds 5900 L, of water. If one replaces the 67 L of
water that they splash out with 67 L of water that has a concentration of 23 grams/L, the
concentration of salt in the pool water may change.

(a) Fill in the blank boxes below to model the situation above. Let s; represent the
concentration of salt in the pool after the otters have splashed ¢ times, measured in grams/L.

Remember that concentration is equal to the amount of salt (grams) divided by the volume

L).

| Step | Volume (L) | Total Salt (grams) | Salt Concentration (grams/L) |
H>0 in pool before otters jump in 5900 5900 St
v S¢
Water lost 67 63 sy 54
H70 in pool after otters jump in
533 5%33s s

4 ]
Water replaced 67 \5Y] 23
H30 in pool after replacing water 59335 + 1541

900 + 22724 79

(b) Write down the discrete-time dynamical system derived from the chart in part (a):

St41 = 5333 Sy + 154

(= 098365, + 0.26(2)

(c) Suppose that 32 L of water at temperature T;°C is mixed with 17 L of water at
temperature T9°C. Express the temperature of the resulting mixture in terms of a weighted
average.
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3. (14 points) (a) Write down a discrete-time dynamical system and an initial condition to
describe the following situation: A lake is created at the zoo and stocked with 780 crayfish.
Every year from then on, the otters catch 23% of the crayfish in the lake. The crayfish do
not reproduce, but at the end of the year the lake is restocked by adding 540 crayfish. (Let
C; = the number of crayfish in the lake at the end of year ¢.)

C = 3%0
Cu = (1-0.23) ¢y +S4o

(b) Find all equilibria of the discrete-time -dynamical system

where k is a parameter. For what values of k is there a positive equilibrium?
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(¢) Consider the discrete-time dynamical system my | = m3. i) Graph the updating function
on the axes below (the diagonal my1 = m; is already graphed). ii) Circle ALL of the
equilibria, and use cobwebbing to help you label each of the equilibria as stable or unstable.
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4. (14 points) Let V; represent the voltage at the AV node in the heart model

Vir = e Vi +u, HV;<e*V,
= e Y, itV > e*V,

a) For each of the following two graphs of the updating function, cobweb for at least 4 steps
starting from an initial value of ¥y = 20, and determine if the heart

i) is healthy, ii} has a 2:1 block, or iii) has the Wenckebach phenomenon.

Include arrows on your cobweb diagram.
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b) Now let e™@" = 0.6, u = 5, and V; = 20. Does the system have an equilibrium? Justify
your answer algebraically (that is, without drawing a graph), and find the equilibrium if there

is one.
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5. (14 points) (a) Find the following limits, if they exist. Show all of your work, and justify your
answers to receive full credit. If a limit does not exist, write “DNE,” and explain why it does
not exist.
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6. (14 points) (a) We are interested in the density of a substance at a temperature of absolute
zero (which is 0 Kelvin)., However, we cannot measure the density directly at 0 Kelvin
because it is impossible to reach absolute 0. Instead, we measure density for small values of
the temperature,

Suppose that density D is a function of temperature T (measured in Kelvin) according to
D(T) = £%r.
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ii) How close to 0 Kelvin would the temperature have to be for the density to be within 1%
{ the limit? . .
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(b) Cousider the function

sin(x), if z <
f(z)=140, if x = m;
cos(z)+1 ifz>m.

Find the following limits, if they exist. If a limit does not exist, write “DNE,” and explain
why it does not exist.

lim f(z) = ©
r—mT
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lim f(z) = o
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Is this function continuous at = 77 Why or why not? Use the definition of continuity (not
a phrase like “the graph can be drawn without lifting the pencil”) to justify your answer.

Stace. tin:\“_ )= o = ),
e
(Yes_ £ s conhauous ot .

leo .
\+21 3




7. (14 points) Hildebriinn throws a ball up into the air from the top of a tower. Suppose
that the height h(t) (in meters) of the ball as a function of time ¢ (in seconds) is given by
h(t) = —5t% + 30t + 20.

(a) Find a formula for the slope of the secant line that passes through the points (2,k(2))
and (2 + At, h(2 4+ At)). Simplify your answer.

Slope of sueauk line = 2488} - W2 _(-5(2+86)' +30(2 +88) +20]-(-5-2%430 2
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(b) Find the average rate of change in i between time ¢ = 2 and time ¢ = 2.5,
Bt 28 -2 0.8,
Wiing He frowda fom (a),
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(c) Find the instantaneous rate of change of h at t = 2 using the limit-definition of the
derivative/instantaneous rate of change. Is the height of the ball increasing or decreasing
at time ¢ = 27
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(d) Find the equation for the tangent line to the graph of ﬁ(t) at the point (2, h(2)).
(1,4 = (2,60)
The  sloge of the hugd lae is (Bam et ) O
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