| 1st Derivative Test Uses: Finding Local Max and Min Finding intervals where a function is increasing & decreasing. | | 2nd Derivative Test Uses: Finding intervals where a function is concave up (like a cup) or concave down (like a frown). | | |--|--|---|--| | Step 1 | Find the first derivative. f'(x) | Step 1 | Find the second derivative. f"(x) | | Step 2 | Find the critical values. Places where $f'(x) = 0$ or $f'(x)$ is undefined Set $f'(x) = 0$ and solve for x . If you have a fraction, set the denominator equal to zero and solve for x to determine if there are any places where $f'(x)$ is undefined. | Step 2 | Find the inflection points. Places where $f''(x) = 0$ or $f''(x)$ is undefined Set $f''(x) = 0$ and solve for x . If you have a fraction, set the denominator equal to zero and solve for x to determine if there are any places where $f''(x)$ is undefined. | | Step 3 | Do the first derivative test. (# Line Game) Draw a # line, label the critical values, and choose test values on the left and right of all the critical values. Plug test values into the <i>first derivative f'(x)</i>. If the value is positive put a plus and draw an increasing arrow above that test value to indicate that region is increasing. If the value is negative put a minus and draw a decreasing arrow above the test value to indicate that region is decreasing. | Step 3 | Do the second derivative test. (# Line Game) Draw a # line, label the inflection points, and choose test values on the left and right of all the inflection points. Plug test values into the second derivative f"(x). If the value is positive put a plus and draw U for concave up (like a cup) above that test value to indicate that region is concave up. If the value is negative put a minus and draw an upside down U for concave down (like a frown) above that test value to indicate that region is concave down. | | Step 4 | Draw conclusions. You have all the data you need to answer any questions involving local max's, local mins, and the intervals where the original <i>f(x)</i> is increasing or deceasing. NOTE: You have only found x-values at this point, if they want to know the actual max or min values you will need to plug those x-values back into the original <i>f(x)</i> to determine the y-values that go with them. | Step 4 | Draw conclusions. You have all the data you need to answer any questions involving the intervals where the original <i>f(x)</i> is concave up or down. NOTE: You have only found x-values at this point, if they want to know the actual inflection <i>point</i> you will need to plug those x-values back into the original <i>f(x)</i> to determine the y-values that go with them. | | Determine Absolute Max and Absolute Mins
Note: Absolute Max/Min problems generally have an
interval [a,b] that you are provided with in addition to the
equation. | | The Stability Test Use for determining if an equilibrium point is stable or unstable. | | | Step 1 | Find the first derivative. f'(x) | Step 1 | Find the equilibrium points. | | Step 2 | Find the critical values. Places where f'(x) = 0 or f'(x) is undefined Set f'(x) = 0 and solve for x. If you have a fraction, set the denominator equal to zero and solve for x to determine if there are any places where f'(x) is undefined. Check that all the critical values you found are in the interval [a,b] that you are given and discard any that are not inside the interval. | Step 2 | Create and <i>f(x)</i> equation based on the DTDS you were given, and use it to find the <i>first derivative</i> , <i>f'(x)</i> . | | | | Step 3 | Plug your equilibrium values from Step 1 into your derivative <i>f'(x)</i> and to get your comparison value (the y-value). | | Step 3 | Plug all critical values, that you found in Step 2, and end points (the a and b from the interval you were given) into the original equation f(x). The largest y-value from these wins the Absolute Max award. The smallest y-value from these wins the Absolute Min award. Note: You will always have both. | Step 4 | Take the absolute value of each of your comparison values from Step 3. If the value is less than 1, < 1, then the point is stable. If the value is greater than 1, > 1, then the point is unstable. If the value is equal to 1, =1, then the test failed (and you wasted your time. |