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1. (14 points) Suppose that the population h; of wild horses satisfies the discrete-time dyxg\
system 6 |/(L
heyr = ghz(k — ha),

where k£ > 0 is a positive parameter.

(a) Find all equilibria. For what values of k is there more than one equilibrium that makes
biological sense?
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(b) For each equilibrium, use the Stability Theorem/Cnlenon to determine the values of
k for which that equilibrium is stable. Show clearly how you are using the Stability
Theorem/Criterion.
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2. (14 points)
(a) Consider the function f(z) = z%~*.

i) Find all critical points of f(x). . |
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i) Determine the global maximum and global minimum of f(z) on the inferval [-1, ].

Justify your answer and show your work clearly for full credit.
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(b) Mary jumps from a diving board. Her height (in meters) above the water at time ¢ (in
seconds) is given by h(t) = —5t2 + 8t + 5, and she jumps at tlme t=0

i) Find Mary’s velocity v(t) and acceleration a(t) at time t = 1.
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ii) Use Calculus to determine the time at which Mary reaches her maximum height above
the water. What is this height? Verify, using Calculus, that this is a local maximum.
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3. (15 points) Evaluate the following definite and indefinite integrals. If necessary,. use
substitution. Show all of your work.
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4. (14 points) Suppose that a bacterium is absorbing lactose from its environment. At time
t =0, there is 0.2 mol of lactose in the bacterium, and lactose enters the bacterium at a rate

. 2(4) mol

of 0.1sin (t)m
(a) Let L(t) represent the amount (mol) of lactose in the bacterium at time ¢ (hours). Write
a pure-time differential equation and an initial condition for the situation described

above. - e —— ~
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dvith At = 0.5 to estimate the amount of lactose in the bacterium
ow your work clearly. Give your answer to three decimal places.

(Recall the f(;rl;lula Lpext = Leurrent + %At or L(t + At) = L(t) + L'(t)At).
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5. (14 points) A western wood pewee slows down a bit to catch a fly, and then increases its speed
again as it flies on. Denoting the position (in meters) of the pewee at time ¢ (in seconds) by
P(t), suppose that the pewee’s velocity is given by

dP _ . 2
dt 0 14t

(a) Estimate the total change in P(t) between times ¢ = 0.5 and ¢ = 2 using a right-hand
Riemann Sum with At = 0.5. Draw your rectangles or step functions on the graph
below.
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6. (15 points)

(a) Andy’s horse starts with a concentration of medicine in her bloodstream equal to 3
milligrams per liter (mg/L). Each day, the horse uses up 23% of the medicine in her
bloodstream. However, at the end of each day the vet gives her enough medication
to increase the concentration of medicine in the bloodstream by 2 mg/L. Let M; =
concentration of medicine on day ¢, and write down a discrete-time dynamical system,
together with an initial condition, that describes this situation.
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(b) Let V/(t) = the volume (in liters) of blood at time ¢ (in seconds) in Dean’s liver. Suppose
that
av

o 0.2 cos(mt — w/2).

i. Use a definite integral to determine the total change in the volume of blood in Dean’s
liver between tlmes t=1landt=
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ii. Determme V(t) if V(0) = 0.47. (That is, find a solution to the differential equation
= 0.2 cos(nt — 7/2) with initial condition V(0) = 0.47.)
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7. (14 points)
(a) A population p; of puffins on an island obeys the discrete-time dynamical system

pe+1 = 1.12p;.

i. Write down the solution to this discrete-time dynamical system if py = 1234.
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ii. If pp = 1234, at what time will the population reach size 20007

4-2all 1)
2000 = (L1} 12y = @ R
él.&nl.ll\ — QED/L( ;z)\‘t eﬂ(”z) el/l (%—g%?\zl{ 2602

(b) The density p of a very thin rod (measured in grams/cm) varies according to

p(z) = dze™2",

where x marks a location along the rod, and z = 0 at one end of the rod. What is the
total mass of the rod if it is 5 cm long? Give units in your answer.
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(c) Suppose that a population p(t) of porcupines satisfies the differential equation

dp _
= = 1.11p(10 — p).
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