NAME:	
Instructor:	
Time your class meets:	

Math 160 Calculus for Physical Scientists I Exam 1 - Version 1 September 15, 2016, 5:00-6:50 pm

"How can it be that mathematics, being after all a product of human thought independent of experience, is so admirably adapted to the objects of reality?"

-Albert Einstein

- 1. Turn off your cell phone and other devices (except your calculator).
- 2. Write your name on every page of the exam. Write your instructor's name on the cover sheet.
- 3. You may use a scientific calculator on this exam. No graphing or symbolic calculator is allowed. You must provide your own calculator; you may not use a laptop computer or smart phone.
- 4. No notes or other references, including calculator manuals or notes stored in calculator memory, may be used during this exam.
- 5. Use the back of the facing pages for scratch work and for extra space for solutions. Indicate clearly when you wish to have work on a facing page read as part of a solution to a problem.

HONOR PLEDGE

I have not given, received, or used any unauthorized assistance on this exam. Furthermore, I agree that I will not share any information about the questions on this exam with any other student before graded exams are returned.

(0.		
(Signature)		
(Date)		

Please do not write in this space.

	 	I
1-15. (39pts)		
16. (11pts)		
17. (24pts)		
18. (10pts)		
19. (16pts)		
TOTAL		

Algebra Mistakes:	
Trigonometry Mistakes:	

Problems 1-15 are Multiple Choice: 39pts

- 1. (2pts) The value of $\lim_{x\to 0} 5$ is
 - (a) 0.
 - (b) 5.
 - (c) ∞ .
 - (d) Does not exist.
- 2. (2pts) The value of $\lim_{\theta \to 0} \frac{\theta}{\cos(\theta)}$ is
 - (a) -1.
 - (b) 0.
 - (c) 1.
 - (d) ∞ .
 - (e) Does not exist.
- 3. (2pts) The value of $\lim_{x\to 3^-} \frac{x^2 9}{|x 3|}$ is
 - (a) 6.
 - (b) -6.
 - (c) 0.
 - (d) ∞ .
 - (e) Does not exist.
- 4. (2pts) The value of $\lim_{t\to\infty} \sin(t)$ is
 - (a) $-\infty$.
 - (b) ∞ .
 - (c) 0.
 - (d) -1 and 1.
 - (e) Does not exist.

- 5. (3pts) Which of the following statements is true about horizontal asymptotes? (circle only one correct answer)
 - (a) The graph of a function can have at most two horizontal asymptotes.
 - (b) The graph of a function can have at most one horizontal asymptote.
 - (c) The graph of a function can have infinitely many horizontal asymptotes.
 - (d) Graphs of functions cannot have horizontal asymptotes.
- 6. (3pts) Suppose that $\lim_{x\to 5^-} h(x) = -\infty$, $\lim_{x\to 5^+} h(x) = 2$, and h(5) does not exist. Then, using the mathematical definition of vertical asymptote, which of the following statements is true? (circle only one correct answer)
 - (a) x = 5 is not a vertical asymptote of the graph of h(x) because $\lim_{x \to 5^+} h(x) = 2$.
 - (b) x = 5 is a vertical asymptote of the graph of h(x) because h(5) does not exist.
 - (c) x = 5 is a vertical asymptote of the graph of h(x) because $\lim_{x \to 5^-} h(x) = -\infty$.
 - (d) x = 5 is a vertical asymptote of the graph of h(x) because $\lim_{x \to 5^-} h(x) \neq \lim_{x \to 5^+} h(x)$.
 - (e) x = 5 is not vertical asymptote of the graph of h(x) because $\lim_{x \to 5^-} h(x) \neq \lim_{x \to 5^+} h(x)$.
- 7. (3pts) The graph of $f(x) = \frac{|x|}{x^2 + 1}$ has
 - (a) no horizontal asymptotes.
 - (b) a horizontal asymptote at y = 1.
 - (c) a horizontal asymptote at y = 0.
- 8. (3pts) Which of the following statements are true about the function $f(x) = \frac{|x|}{x^2 + 1}$?
 - (a) f(x) is continuous except at x = -1 and x = 1.
 - (b) f(x) is continuous except at x = -1.
 - (c) f(x) is continuous except at x = 0.
 - (d) f(x) is continuous for all real numbers.

Use
$$p(x) = \begin{cases} \sin(\pi x), & x < 0 \\ \frac{x^2 - 1}{1 - x}, & x > 0 \end{cases}$$
 to answer questions 9 and 10.

- 9. (3pts) At x = 0, p(x)
 - (a) is continuous.
 - (b) has a jump discontinuity because $\lim_{x\to 0^-} p(x)$ exists and $\lim_{x\to 0^+} p(x)$ exists, but $\lim_{x\to 0^-} p(x) \neq \lim_{x\to 0^+} p(x)$.
 - (c) has a removable discontinuity because $\lim_{x\to 0} p(x)$ exists, but p(0) does not exist.
 - (d) None of the above.
- 10. (3pts) At x = 1, p(x)
 - (a) is continuous.
 - (b) has a jump discontinuity because $\lim_{x\to 1^-} p(x)$ exists and $\lim_{x\to 1^+} p(x)$ exists, but $\lim_{x\to 1^-} p(x) \neq \lim_{x\to 1^+} p(x)$.
 - (c) has a removable discontinuity because $\lim_{x\to 1} p(x)$ exists, but p(1) does not exist.
 - (d) None of the above.
- 11. (3pts) Consider the function $y = 2 \frac{1}{2}x^3$, whose graph is provided below.

We can see that

$$\lim_{x \to 2} \left(2 - \frac{1}{2} x^3 \right) = -2$$

Suppose we will allow a tolerance of 0.5 within L = -2 for the function values (i.e. $\epsilon = 0.5$). What is the **maximum** amount of error that can occur on either side of $x_0 = 2$ so that the function values still lie within 0.5 of L? (i.e. find the maximum δ).

- (a) 0.125.
- (b) 0.087.
- (c) 0.080.
- (d) 0.250.

Use the function, f(x), below to answer questions 12-15.

$$f(x) = \begin{cases} Cx+1, & x < -1 \\ D & x = -1 \\ \frac{x^2 - 2x - 3}{x+1}, & x > -1 \end{cases}$$

12. (2pts) The value of $\lim_{x\to -1^-} f(x)$ is

(your answer may be in terms of C or D).

- (a) C + 1.
- (b) -C + 1.
- (c) D.
- (d) -D.
- (e) cannot be determined.
- 13. (2pts) The value of $\lim_{x\to -1^+} f(x)$ is
 - (a) -4.
 - (b) -2.
 - (c) 2.
 - (d) -1.
 - (e) 5.
 - (f) cannot be determined.
- 14. (3pts) The value C must be in order for f(x) to be continuous at x = -1 is
 - (a) -4.
 - (b) -3.
 - (c) -1.
 - (d) 5.
 - (e) cannot be determined.
- 15. (3pts) The value D must be in order for f(x) to be continuous at x = -1 is
 - (a) -4.
 - (b) -3.
 - (c) -1.
 - (d) 5.
 - (e) cannot be determined.

16.	(11p	pts) Farmer Catherine wants to construct a square animal p	en (also called an ϵ	enclosure or corral).
	(a)) If a side length is represented by x , write the function, $A(x)$ animal pen:	x), that represents	the area of the
		1		
			,	
	(L)) E	-1.1 h h - h	$A(x) = \underline{\qquad}$
	(b)) Farmer Catherine wants to enclose an area of 100 ft ² to he "perfect" side length that achieves this area?	old her baby goats.	What is the
				x =
	(c)	Farmer Catherine's measurements are not perfect, but she		an area within 0.5 ft^2
		of the perfect area 100 ft ² (i.e. $\epsilon = 0.5$). What corresponds area? Write any decimals to 4 places.	ing side lengths sat	isty this range in
			< x	<

- 17. (24pts) The graph of a **function**, f(x), that has the following properties. Sketch the graph of f(x) and then answer the following questions about f(x).
 - f(x) is continuous for x < -5
 - f(x) is continuous for x > 0
 - $\bullet \lim_{x \to -\infty} f(x) = -\infty$
 - $\bullet \lim_{x \to -5^-} f(x) = -3$
 - f(-5) = -3
 - $\bullet \lim_{x \to -5^+} f(x) = 1$
 - $\bullet \lim_{x \to 0^-} f(x) = 6$
 - f(0) = 0
 - $\bullet \lim_{x \to 0^+} f(x) = \infty$
 - $\bullet \lim_{x \to \infty} f(x) = 1$

18.	(10pts) Each of the statements below is $\underline{\text{false}}$.	For each of the false statements below, provide a
	counterexample and explain why, in sentences	, it is a counterexample.

(a) If g(3) is defined, then g(x) is continuous at x = 3.

(b) Suppose that h(t) is defined on [-4,7] and h(-4)=-1 and h(7)=1. Then there is some c in the interval (-4,7) such that h(c)=0.

- 19. <u>Directions for Limits</u>: Evaluate the following limits algebraically (manipulating the expression so that you can use limit theorems not numerically, graphically, or with l'Hopital's rule.)
 - If the limit does not exist or is infinite, explain how you know.
 - Points will be taken off for incorrect notation.
 - All trigonometric functions must be evaluated.
 - No partial credit will be given for answers without supporting work.

(a) (5 points)
$$\lim_{t \to 1} \left(\frac{(t^2 - 4t + 3)}{(t - 1)} \cdot \frac{\tan(\pi t)}{\sin(\pi t)} \right)$$

(b) (5 points)
$$\lim_{x \to \infty} \frac{\sqrt[3]{x} + 2x^2 - 5}{3x^2 + 4 - \pi}$$

(c) (6 points) Use the Sandwich Theorem (also called Squeeze Theorem) to show that $\lim_{x\to\infty} \frac{\sin(x)}{x} = 0$