Math 141, Exam 3 Practice Exam

Name:		
Student ID:		
Version: A		

Instructions:

- Do NOT open exam booklet until instructed.
- Write your Name and Student ID Number on the lines above.
- Write your Name and Student ID Number on the answer sheet.
- Fill in version (A or B) on your answer sheet.
- No calculators, personal devices (phones, computers, tablets, etc.), or reference materials may be used during the exam.
- Indicate your answer to each question on the answer sheet by fully filling in the appropriate bubble.
- You may use any blank space on this exam booklet for your scratch work or ask for a blank sheet for scratch work. DO NOT USE YOUR OWN SCRATCH PAPER!
- The exam booklet and answer sheet will be collected at the end of the exam. Only the answer sheet will be graded.

- 1. If $ln(x^5) = 3$, then
 - (a) $x = \frac{e^3}{5}$
 - (b) $x = e^{\frac{3}{5}}$
 - (c) $x = e^{15}$
 - (d) $x = \frac{\ln(3)}{5}$
- **2.** Which of the following is an equation for the tangent line to $y = -e^{4x}$ at x = 0.
 - (a) y = -4x 4
 - (b) y = -x 4
 - (c) y = -x + 1
 - (d) y = -4x 1
- **3.** What is the derivative of $f(x) = 5 \ln(2x)$?
 - (a) $f'(x) = \frac{5}{2x}$
 - (b) $f'(x) = \frac{5}{x}$
 - (c) $f'(x) = \frac{10}{x}$
 - (d) $f'(x) = 10 \ln(x)$
- **4.** Let $f(x) = e^{\sqrt{x^3+4}}$. Find f'(x).
 - (a) $\frac{1}{2}e^{\sqrt{x^3+4}}(x^3+4)^{-1/2}$
 - (b) $e\sqrt{x^3+4}$
 - (c) $\frac{3}{2}x^2e^{\sqrt{x^3+4}}(x^3+4)^{-1/2}$
 - (d) $3x^2e^{\sqrt{x^3+4}}$

- **5.** Compute $\frac{d}{dx} \frac{e^x}{\ln(x)}$.
 - (a) $\frac{e^x}{x}$
 - (b) $\frac{\frac{e^x}{x} e^x \ln(x)}{(\ln(x))^2}$
 - (c) $\frac{e^x \ln(x) \frac{e^x}{x}}{\ln(x^2)}$
 - (d) $\frac{e^x \left(\ln(x) \frac{1}{x}\right)}{(\ln(x))^2}$
- **6.** Which of the following statements about e^x is false? (Choose one.)
 - (a) The function e^x is its own derivative.
 - (b) The domain of $f(x) = e^x$ is all real numbers.
 - (c) e^x is positive for all real numbers.
 - (d) ln(e) = 1.
 - (e) The natural exponential has a relative maximum at x = 0.
- 7. Find a function A(t) satisfying A'(t) = 2A(t) and A(0) = -1.
 - (a) $A(t) = -e^{2t}$
 - (b) $A(t) = e^{2t} 1$
 - (c) $A(t) = e^{2t} 2$
 - $(d) A(t) = -2e^{2t}$
- **8.** If $\int f(x)dx = 2x^4 + C$, what is f(x)?
 - (a) $\frac{8}{3}x^3$
 - (b) $8x^3$
 - (c) $2x^3$
 - (d) $8x^4$

9. Evaluating an indefinite integral produces

- (a) a number.
- (b) a single function.
- (c) a set of functions.

10. Evaluating a definite integral produces

- (a) a number.
- (b) a single function.
- (c) a set of functions.

11. Evaluate $\int 5x^4 + e^x dx$

(a)
$$x^5 + e^x$$

(b)
$$x^5 + e^x + C$$

(c)
$$20x^3 + e^x + C$$

(d)
$$20x^3 + e^x$$

12. Find
$$f(x)$$
 if $f'(x) = 7x^2 + 3x - 3$ and $f(0) = 1$.

(a)
$$\frac{7}{3}x^3 + \frac{3}{2}x^2 - 3x$$

(b)
$$7x^3 + 3x^2 - 3x + 1$$

(c)
$$\frac{7}{3}x^3 + \frac{3}{2}x^2 - 3x + 1$$

(d)
$$\frac{7}{3}x^3 + \frac{3}{2}x^2 - 3x + C$$

13. Evaluate $\int_1^2 \frac{5}{x} dx$.

- (a) 5
- (b) 10
- (c) $5 \ln(2)$
- (d) $10 \ln(\frac{1}{2})$

14. The area of the region bounded by the graphs of g(x) = 2x + 1 and $h(x) = x^2 + 1$ is represented by

(a)
$$\int_0^1 (2x+1) - (x^2+1)dx$$

(b)
$$\int_0^2 (2x+1) - (x^2+1)dx$$

(c)
$$\int_0^1 (x^2+1) - (2x+1)dx$$

(d)
$$\int_0^2 (x^2+1) - (2x+1)dx$$

15. The area under the graph of f from -4 to 5 where

$$f(x) = \begin{cases} 9 & x < 3 \\ x^2 & x \ge 3 \end{cases}$$

is represented by which of the following.

- (a) $\int_{-4}^{5} x^2 dx$
- (b) $\int_{-4}^{3} 9dx + \int_{3}^{5} x^{2}dx$
- (c) $\int_{-4}^{3} x^2 dx + \int_{3}^{5} 9 dx$
- (d) it is impossible to integrate piecewise functions, to there is no solution

16. What is the average value of x^2 over the interval [0,2]?

- (a) $\frac{8}{3}$
- (b) $\frac{8}{6}$
- (c) $\frac{4}{3}$
- (d) 4

17. Let f(x) be a continuous function with continuous derivative. If $\int_1^5 f'(x)dx = 10$ and f(1) = 2, what is f(5)?

- (a) 12
- (b) 8
- (c) 10
- (d) There is not enough information to answer the question.

18. Evaluate $\int \frac{6x^2}{x^3-5} dx$.

- (a) $6 \ln |x^3 5| + C$
- (b) $\frac{2}{(x^3-5)^2} + C$
- (c) $2 \ln |x^3 5| + C$
- (d) $\frac{6x}{(x^3-5)^2} + C$

19. If u = x - 3, then

- (a) du = 1
- (b) du = dx
- (c) du = 3dx
- (d) du = 3

20. Compute $\int_3^4 (x-3)^{10} dx$

- (a) $\frac{1}{11}$
- (b) $\frac{1}{11}(4^{11}-3^{11})$
- (c) $(4^{10} 3^{10})$
- (d) 1