Exam II - MATH 141 - Summer 2018

Answer Key

Use the following graph of the function y=f(x) to answer questions 1 through 3. Assume that none of the points A, B, C, and D are points of inflection.

- 1. At point A, which of the following statements is true?
 - (a) f(x) is negative, f'(x) is negative, and f''(x) is negative.
 - (b) f(x) is positive, f'(x) is positive, and f''(x) is positive.
 - (c) f(x) is positive, f'(x) is zero, and f''(x) is negative.
 - (d) f(x) is negative, f'(x) is negative, and f''(x) is positive.
 - (e) none of the above
- 2. At point B, which of the following statements is true?
 - (a) f(x) is zero, f'(x) is positive, and f''(x) is negative.
 - (b) f(x) is negative, f'(x) is negative, and f''(x) is negative.
 - (c) f(x) is zero, f'(x) is positive, and f''(x) is positive.
 - (d) f(x) is positive, f'(x) is zero, and f''(x) is positive.
 - (e) none of the above
- 3. Which of the following statements is true?
 - (a) There is a relative maximum at \mathbf{D} .
 - (b) There is an absolute minimum between ${\bf B}$ and ${\bf C}.$
 - (c) Between **B** and **C**, f(x) is concave down.
 - (d) Between \mathbf{C} and \mathbf{D} , f(x) is concave down.
 - (e) none of the above

4. Find the absolute minimum and maximum of $f(x) = x^2 + 2x + 4$ on [-4, 1]

- (a) The absolute maximum is 7. The absolute minimum is 3.
- (b) The absolute maximum is 7. The absolute minimum is 12.
- (c) The absolute maximum is 12. The absolute minimum is 3.
- (d) The absolute maximum is 7. The absolute minimum is -1.
- (e) There is no absolute minimum or maximum

5. For $f(x) = x^4 + \frac{1}{x^2}$ find $f^{(3)}(x)$.

- (a) $\frac{12x^2+6x}{x^5}$ (b) $\frac{24}{x^4}$
- (c) $12x^2 + \frac{6}{x^4}$
- (d) $24x \frac{24}{x^5}$
- (e) none of the above

6. Where is $f(x) = \frac{8}{x^2 - 4}$ concave down?

- (a) (-2,2)
- (b) $(\infty, -2)$ and $(2, \infty)$
- (c) f(x) is never concave down
- (d) $(-\infty, \infty)$
- (e) none of the above

7. $f(x) = 3x + \frac{1}{x}$ on $(-\infty, 0)$ has an absolute maximum of

- (a) $\frac{-3}{\sqrt{3}} \sqrt{3}$
- (b) 2
- (c) 0
- (d) -3.464
- (e) All of the above

- 8. If $f(x) = x^5 + \sqrt{x}$, then f''(x) =
 - (a) $5x^4 \frac{20x^3}{4x^{3/2}}$
 - (b) $5x \frac{1}{4x^{3/2}}$
 - (c) $5x^4 + \frac{1}{2\sqrt{x}}$
 - (d) $20x^3 \frac{1}{4x^{3/2}}$
 - (e) $-\frac{20x^3}{4x^{3/2}}$
- 9. What are the critical values of $g(x) = \sqrt[5]{x^2 6x}$?
 - (a) x = 3 only
 - (b) x = 2 only
 - (c) x = 0 and x = 6
 - (d) x = 0, x = 3 and x = 6
 - (e) none of the above
- 10. Which of the following is true?
 - (a) If f(c) is a relative minimum, then c is a critical value.
 - (b) If f(x) is a continuous function over an open interval (a, b), then f(x) has an absolute maximum and an absolute minimum over (a, b).
 - (c) If f'(c) = 0, then f(c) is a relative maximum.
 - (d) none of the above
- 11. Find the coordinates of the relative extrema of $f(x) = (x x^2)^{0.8}$
 - (a) (0,0) and (0,1)
 - (b) (0,0), $\left(\frac{1}{2}, \left(\frac{1}{4}\right)^{0.8}\right)$ and (1,0)
 - (c) $\left(\frac{1}{2}, \left(\frac{1}{4}\right)^{0.8}\right)$ only
 - (d) (0,0) only
 - (e) (1,0) only

12. If the revenue R(x) (in dollars), and cost C(x) (in dollars) for the production and sale of x units of a product are given by

$$R(x) = 50x - x^2$$
, $C(x) = 2x + 5$,

then the profit P(x) (in dollars) equals

- (a) $-x^2 + 48x 5$
- (b) $-x^2 52x 5$
- (c) $x^2 52x + 5$
- (d) $-x^2 + 48x + 5$
- (e) none of the above

Use the function P(x) from problem 12 to answer questions 13 through 15.

- 13. Which of the following is the best interpretation of P(10)?
 - (a) The exact profit from producing and selling the 10th unit is \$375.
 - (b) The exact profit from producing and selling the first 10 units is \$375.
 - (c) The approximate profit from producing and selling the 10th unit is \$375.
 - (d) The approximate profit from producing and selling the first 10 units is \$375.
 - (e) none of the above
- 14. Which of the following is the best interpretation of P'(10)?
 - (a) The exact profit from producing and selling the first 10 units is \$28.
 - (b) The exact profit from producing and selling the first 11 units is \$28.
 - (c) The approximate profit from producing and selling the 10th unit is \$28.
 - (d) The approximate profit from producing and selling the 11th unit is \$28.
 - (e) none of the above
- 15. Given that P'(10) = 28 dollars per unit, which of the following statements is **false**?
 - (a) R'(10) C'(10) = 28.
 - (b) When x = 10, the derivative of the profit function is positive.
 - (c) When 10 units are produced and sold, the marginal profit is 28 dollars per unit.
 - (d) When x = 10, P(x) is decreasing.
 - (e) none of the above

- 16. Suppose that y = f(x) is differentiable over all real numbers and has only one critical value at x = 1. If f'(0) is negative and f'(3) is positive, then there is
 - (a) a relative minimum at x = 1
 - (b) a point of inflection at x = 1
 - (c) a relative maximum at x = 1
 - (d) none of the above
- 17. Given f(4) = 3, f'(4) = 0, and f''(4) = 10, there is
 - (a) an inflection point at x = 4
 - (b) a relative maximum at x = 4
 - (c) a relative minimum at x = 4
 - (d) neither a relative maximum nor a relative minimum at x = 4
- 18. Alice and Bob are selling widgets and determine that to sell x widgets, the price must be

$$p(x) = 280 - 0.4x$$

They have also found that the cost of producing x widgets is

$$C(x) = 5000 + 0.6x^2$$

What price per widget should Alice and Bob charge to maximize their profit? *Hint:* Find the revenue function, R(x), and recall that

$$R(x) = (price per unit) \cdot (number of units sold)$$

- (a) \$280
- (b) \$14,600
- (c) \$140
- (d) \$224
- (e) \$0
- 19. Find the absolute extrema of $f(x) = \frac{2x}{x^2 + 9}$ over the interval [-1, 5].
 - (a) The absolute maximum is $\frac{1}{3}$ and the absolute minimum is 0.
 - (b) The absolute maximum is 3 and the absolute minimum is $-\frac{1}{5}$.
 - (c) The absolute maximum is 3 and the absolute minimum is 0.
 - (d) The absolute maximum is $\frac{1}{3}$ and the absolute minimum is $-\frac{1}{5}$.
 - (e) There is neither an absolute maximum nor an absolute minimum.

20. Sound Software estimates that it will sell N units of a program after spending a thousand dollars on advertising, where

$$N(a) = -2a^2 + 400a + 12, \qquad 0 \le a \le 300.$$

Find the amount that must be spent on advertising in order to achieve the maximum number of units that can be sold.

- (a) \$22,506
- (b) \$300,000
- (c) \$100,000
- (d) \$12,000
- (e) \$0
- 21. Of all the numbers whose sum is 50, find the maximum product.
 - (a) 0
 - (b) 625
 - (c) 1000
 - (d) 50
 - (e) none of the above
- 22. A carpenter is building a rectangular shed with a fixed perimeter of 54 ft. What are the dimensions of the shed with largest area that can be built?
 - (a) Width is 30 ft, height is 24 ft.
 - (b) Width is 10 ft, height is 17 ft.
 - (c) Width is 13.5 ft, height is 13.5 ft.
 - (d) Width is 2 ft, height is 25 ft.
 - (e) None of the above