Math 155
 Final Exam
 Fall 2017

NAME: \qquad

SECTION: \qquad TIME: \qquad

INSTRUCTOR: \qquad

Instructions: The exam is closed book and closed notes. You may use an approved calculator, but be sure to show your work on each problem for full credit. Work that is crossed out or erased will not be graded. You can ask for scratch paper from a proctor. Turn in any scratch paper that you use during the exam. You will have two hours to work on the exam.

Problem	Points	Score
1	12	
2	7	
3	15	
4	10	
5	8	
6	5	
7	10	
8	8	
9	5	
10	6	
11	4	
12	5	
13	5	
Bonus	5	
Total	100	

CONFIDENTIALITY PLEDGE

I agree that I will not share any information, either specific or general, about the problems on this examination with any other person until the exams have been returned to us. You can pick up final exams after grades are posted in the front office of Weber, the math building.

1. (12 points) Suppose that the population w_{t} of yellow warblers satisfies the discrete-time dynamical system

$$
w_{t+1}=\frac{3}{5} w_{t}\left(k-w_{t}\right),
$$

where $k>0$ is a positive parameter.
(a) Find all equilibria.
(b) For what values of k is there more than one equilibrium greater than or equal to zero?
(c) For the equilibrium $w^{*}=0$, use the Stability Theorem/Criterion to determine the values of k for which that equilibrium is stable. Use correct notation in your steps that show how you used the Stability Theorem/Criterion.

2. (7 points)

Consider the function $f(x)=x \mathrm{e}^{-3 x^{2}}$.
Find all values of x where the rate of change of $f(x)$ is zero or undefined. These x values are called critical points of $f(x)$.
Hint: The value of $y=e^{-3 x^{2}}$ is always positive.
3. (15 points) Evaluate the following definite and indefinite integrals. Show all of your work.
(a) $\int_{1}^{3} x^{2} d x$
(b) $\int_{1}^{3} \frac{-x^{2}+x^{7}}{x^{3}}+e^{2} d x$
(c) Use integration by parts to evaluate $\int-x \mathrm{e}^{7 x} d x$.
4. (10 points) A runner is running a marathon. At time $t=0$ the runner is -0.1 miles from the starting line because she did not arrive in time. When the runner has a negative distance it means she is before the starting line. She runs at a rate of

$$
10 e^{-0.1 t} \text { miles } / \text { hour }
$$

(a) Let $P(t)$ represent the distance the runner is from the starting line at time t (hours). Write a pure-time differential equation and an initial condition for the situation.
(b) Estimate distance the runner is from the starting line at $t=1.5$ assuming the same initial condition as part a. Pretend the rate of change is constant on intervals of size $\Delta t=0.5$. Show work.
Note: You can use Euler's method or Riemann sums with left-hand estimates.
5. (8 points) $P(t)$ is the position (in meters) of at car at time t (in seconds). The car's velocity is given by

$$
\frac{d P}{d t}=3 t
$$

a) Label both axes on graph.
b) Estimate the total change in $P(t)$ between times $t=1$ and $t=2.5$ using a righthand Riemann Sum with $\Delta t=0.5$. Draw your rectangles or step functions on the graph below.

6. (5 points) A horse starts with a concentration of medicine in her bloodstream equal to 4 milligrams per liter (mg / L). Each morning the horse has used up 12% of the medicine in her bloodstream. Each afternoon the horse gets enough medication to increase the concentration of medicine in her bloodstream by $5 \mathrm{mg} / \mathrm{L}$. Let $M_{t}=$ concentration of medicine on day t.

Write down a discrete-time dynamical system, together with an initial condition, that describes this situation.
7. (10 points) Let $V(t)$ equal the volume (in milliliters) of blood at time t (in seconds) in the spleen of a bird. Suppose that

$$
\frac{d V}{d t}=0.4 \cos (3 t+\pi)
$$

(a) Use a definite integral to determine the total change in the volume of blood in the bird's spleen between times $t=\frac{\pi}{2}$ and $t=2 \pi$. Show work. You will only get partial credit for finding the final answer with your calculator if there is not work.
(b) Determine $V(t)$ if $V(0)=3$. (That is, find a solution to the differential equation $\frac{d V}{d t}=0.2 \cos (2 t+\pi)$ with initial condition $V(0)=3$.)
8. (8 points) A population p_{t} of foxes obeys the discrete-time dynamical system

$$
p_{t+1}=1.2 p_{t}
$$

(a) Write down the solution to this discrete-time dynamical system if $p_{0}=1247$. (In other words, find a function that gives population for any time t.)
(b) If $p_{0}=1247$, at what time will the population reach size 4000 ?
9. (5 points) The graph of the mass of an object $y=M(x)$ is given below.

The value of the rate of change of mass at time $x=2$ is:
A) Positive
B) Negative
C) Undefined
D) Zero
E) Not enough information.
10. (6 points) Estimate the slope of the function at the point shown. See below. The x and y axes are scaled identically.

A) The slope is approximately 2
B) The slope is approximately -4
C) The slope is approximately -20
D) The slope is approximately 4
E) The slope is approximately $\frac{-1}{4}$
11. (4 points) Graph of $y=f^{\prime}(x)$

Graph of $y=g^{\prime}(x)$

Graph of $y=h^{\prime}(x)$

Which of the following is true?
A) $\int_{-2}^{2} f^{\prime}(x) d x<\int_{-2}^{2} g^{\prime}(x) d x<\int_{-2}^{2} h^{\prime}(x) d x$
B) $\left.\int_{-2}^{2} g^{\prime}(x) d x<\int_{-2}^{2} h^{\prime}(x)<B\right) \int_{-2}^{2} f^{\prime}(x) d x$
C) $\int_{-2}^{2} h^{\prime}(x) d x<\int_{-2}^{2} f^{\prime}(x) d x<\int_{-2}^{2} g^{\prime}(x) d x$
D) $\int_{-2}^{2} f^{\prime}(x) d x<\int_{-2}^{2} h^{\prime}(x) d x<\int_{-2}^{2} g^{\prime}(x) d x$
E) $\int_{-2}^{2} h^{\prime}(x) d x<\int_{-2}^{2} g^{\prime}(x) d x<\int_{-2}^{2} f^{\prime}(x) d x$
12.

(5 points) The figure above shows the graph of $f(x)$. Which of the following could be the graph of its derivative, $f^{\prime}(x)$?
(A)

(B)

(C)

(D)

(E)

13. (5 points) The graph of $f^{\prime}(x)$:

The graph of f^{\prime}, the derivative of f, is shown in the figure above. The function f has a local maximum at $x=$
A) 0
B) 0.46
C) 0.886
D) 1.49
E) The function has more than one local maximum on interval shown.
(Bonus-5 points) Graph of $y=h^{\prime}(t)$.

The graph of a function $h^{\prime}(t)$ is shown above. Let

$$
h(x)=\int_{0}^{x} h^{\prime}(t) d t
$$

Which of the following is true?
A) $h(3)<h^{\prime}(3)<h^{\prime \prime}(3)$
B) $h(3)<h^{\prime \prime}(3)<h^{\prime}(3)$
C) $h^{\prime \prime}(3)<h^{\prime}(3)<h(3)$
D) $h^{\prime \prime}(3)<h(3)<h^{\prime}(3)$
E) $h^{\prime}(3)<h(3)<h^{\prime \prime}(3)$

